María José Maureira Postdoc at MPI for Extraterrestrial Physics

Collaborators: Babobab Liu, Paola Caselli, Hector Arce, Jaime E. Pineda, Leonardo Testi, Munan Gong, Felipe Alves, Chenghan Hsieh, Dominique Segura-Cox, Joaquin Zamponi and *the ALMA-CAMPOS, FAUST ALMA Large Program, and NOEMA-PRODIGEE teams.*

Observations of multiple body systems with ALMA

María José Maureira Postdoc at MPI for Extraterrestrial Physics

Collaborators: Babobab Liu, Paola Caselli, Hector Arce, Jaime E. Pineda, Leonardo Testi, Munan Gong, Felipe Alves, Chenghan Hsieh, Dominique Segura-Cox, Joaquin Zamponi and *the ALMA-CAMPOS, FAUST ALMA Large Program, and NOEMA-PRODIGEE teams.*

Observations of multiple body systems with ALMA

Very Young

From dense clouds to protostars and planets

'Embedded protostellar stage' Most active stellar accretion phase

Pre-Main sequence stars

Credit: M. Persson

From dense clouds to protostars and planets

'Embedded protostellar stage' Most active stellar accretion phase

Pre-Main sequence stars

Offner et al. 2023 (PPVII)

Class 0 binaries with sep < 100 au resolved down to 6-8 au $U \cap \bigcap_{i=1}^n I \cap I$ CrA24 3 mm Elias 29 3 mm

Dust emission

 $t \lesssim 10^4 - 2 \cdot 10^5 yr$

IRAS16293 A 3 mm

References: Maureira et al. 2020a, Reynolds et al. 2024, Maureira et al. in prep

Class 0 binaries with sep < 100 au resolved down to 6-8 au

References: Ohashi et el 2022, Hara et al. 2021, Maureira et al. in prep

Class 0 binaries with sep < 100 au resolved down to 6-8 au $U \cap \bigcap_{i=1}^n I \cap I$ CrA24 3 mm Elias 29 3 mm

Dust emission

 $t \lesssim 10^4 - 2 \cdot 10^5 yr$

IRAS16293 A 3 mm

References: Maureira et al. 2020a, Reynolds et al. 2024, Maureira et al. in prep

Class 0 binaries with sep < 100 au resolved down to 6-8 au

Dust emission

References: Maureira et al. 2020a, Maureira et al. 2022

Class 0 binaries with sep < 100 au resolved down to 6-8 au

References: Maureira et al. 2020a, Maureira et al. 2022

Dust emission

Class 0 binaries with sep < 100 au resolved down to 6-8 au $U \cap \bigcap_{i=1}^n I \cap I$ CrA24 3 mm Elias 29 3 mm

Dust emission

 $t \lesssim 10^4 - 2 \cdot 10^5 yr$

IRAS16293 A 3 mm

References: Maureira et al. 2020a, Reynolds et al. 2024, Maureira et al. in prep

Class 0 binaries with sep < 100 au resolved down to 6-8 au

References: Tobin et al. 2018, Reynolds et al. 2024

Class 0 binaries with sep < 100 au resolved down to 6-8 au $U \cap \bigcap_{i=1}^n I \cap I$ CrA24 3 mm Elias 29 3 mm

Dust emission

 $t \lesssim 10^4 - 2 \cdot 10^5 yr$

IRAS16293 A 3 mm

References: Maureira et al. 2020a, Reynolds et al. 2024, Maureira et al. in prep

Class I binaries with sep < 100 au resolved down to 6-8 au

References: Takakuwa et al. 2017, Alves et al. 2019, Narayanan et al. 2023, Brinch et al. 2016, Maureira et al. in prep

Class I binaries with sep < 100 au resolved down to 6-8 au

References: Takakuwa et al. 2017, Alves et al. 2019, Narayanan et al. 2023, Brinch et al. 2016, Maureira et al. in prep

女女

 M_{excess} at al 2022 Excelede at al 2024 Lexensen at al 2 \mathcal{L} References: Ohashi et al. 2023, Reynolds et al. 2024, Maureira et al. 2022, Encalada et al. 2024, Jorgensen et al. 2022

$1.0''$ (300.0 AU)

Class 0/I binaries with sep > 100 au

A2

A1

ALMA 3 mm at 6.5 au resolution

Hot gas/dust spots due to shocks?

Gong, Maureira et al. in prep

More examples of hot 'shocked' regions in circumbinary material?

CH3OCH3 with temperatures 100-130 K $n(H2) \sim 10^7$ cm⁻³

Vastel et al. 2024, Alves et al. 2019

More examples of hot 'shocked' regions in circumbinary material?

CH3OCH3 with temperatures 100-130 K $n(H2) \sim 10^7$ cm⁻³

Vastel et al. 2024, Alves et al. 2019

Hsieh et al. 2025 (submitted)

α **1.3-3mm Spectral index** \blacksquare

Maureira et al. in prep

Maureira et al. in prep the more isolated sources \blacksquare while the closer multiples are in the bottom row. For each group the sources are organized by \blacksquare

Spectral index in circumbinary and circumstellar Class 0/I disks

1*.*0 1*.*5 2*.*0 2*.*5 3*.*0 3*.*5 4*.*0 1*.*0 1*.*5 2*.*0 2*.*5 3*.*0 3*.*5 4*.*0 RCrA SMM1C 1.0*±* 0.1 1.7*±* 0.1 1.8*±* 0.1 VLA 1623 W RCrA IRS7B IRAS16293 B 3.0 ± 0.2 3.6 ± 0.2 3.0 ± 0.2 RCrA SMM1C Class 0 Class I Class I Class 0 50 au 20 au 20 au Class 0 Class 0 Class I Class I 50 au 20 au 20 au RCrA IRS7A CXO 34 1.4*±* 0.1 -0.4*±* 0.1 IRS 63 1.6*±* 0.1 Elias 29 2.8*±* 0.2 1.7*±* 0.1 3.2*±* 0.2 1.4*±* 0.1 $1.(± 0.1)$ 1.6*±* 0.1 Class I Class I Class I Class I 10 au 20 au 10 au \bullet Class I Class I Class I Class I 10 au 10 au $\overline{}$ 1.6*±* 0.1 1.9*±* 0.1 1.8*±* 0.1 \sim $\overline{}$ L1551 IRS5 $1.6±0.1$ 3.4*±* 0.1 1.9*±* 0.1 3.3*±* 0.2 1.8*±* 0.1 VLA1623 A/B IRAS16293 A L1551 IRS5 3.6*±* 0.2 3.4*±* 0.1 3.3*±* 0.2 $\frac{1}{2}$ a di Santang Bandara Indonesia.
Tanàna amin'ny farita 50 au 50 au 50 au Class 0 Class 0 Class I 50 au 50 au 50 au

1.3-3mm Spectral index

1.3-3mm Spectral index

β

the more isolated sources (separations α) while the closer multiples are in the sources are organized by the sources are organized by α increasing bolometric temperature. The upper corner of each panel shows the minimum value within the map, considering only α pixels with errors below 0.2 (including both statistical and flux calibration uncertainties). Maureira et al. in prep

Spectral index in circumbinary and circumstellar Class 0/I disks

Optically thick ISM dust

Maureira et al. in prep

Mass estimates: Circumbinary and circumstellar disks

Mass CB disk $Gas ~ 0.07 M_{sun} (~70 M_{jup})$ Dust \sim 180 M_{Earth}

Mass CB disk $Gas ~ 0.05 M_{sun} (~50 M_{jup})$ Dust \sim 170 M_{Earth}

Mass CB disk $Gas ~ 0.1 M_{sun} (~ 100 M_{jup})$ Dust \sim 300 M_{Earth}

Maureira et al. in prep

Mass CB disk $Gas ~ 0.07 M_{sun} (~70 M_{jup})$ Dust \sim 180 M_{Earth}

Mass estimates: Circumbinary and circumstellar disks

Mass CS disks $Gas ~ 0.03 M_{sun} (~ 30 M_{jup})$ Dust \sim 100 M_{Earth}

Mass CB disk $Gas ~ 0.05 M_{sun} (~50 M_{jup})$ Dust \sim 170 M_{Earth}

 $Gas ~ 0.02 M_{sun} (~20 M_{jup})$ Mass CS disks Dust \sim 80 M_{Earth}

Mass CB disk $Gas ~ 0.1 M_{sun} (~ 100 M_{jup})$ Dust \sim 300 M_{Earth}

Mass CS disks Gas ~ 10^{-3} - 10^{-2} M_{sun} (~1-10 M_{jup}) Dust \sim 2 - 40 M_{Earth}

Maureira et al. 2020a

Orbital motion of the Class 0 binary IRAS 16293 A

Maureira et al. 2020a

ALMA 3 mm at 6.5 au resolution

Relative orbital motion

Orbital motion of the Class 0 binary IRAS 16293 A

Maureira et al. 2020a

Orbital motion of the Class 0 binary IRAS 16293 A

Orbital motion of the Class I binary L1551 IRS 5

Hernandez Garnica et al. 2024

Orbital motion of the Class I binary L1551 IRS 5

Hernandez Garnica et al. 2024

• Circumstellar disks are optically thick at 1.3 and 3 mm (in singles and multiple systems), while circumbinary disks

• Orbital parameters are starting to be constrained for embedded Class 0 and I systems using ALMA and VLA, more

- (spirals, ring-like, disk-like, etc) and **misalignments** (CB vs CS disk) ….BUT not all show clear circumbinary disk structures (* in dust emission)
- accretion streamers.
- **interpreted as shocks** (origin: binary accretion, accretion streamers from envelope, outflows?)
- appear to be optically thinner (tau $<$ 1).
- Mass estimates for CB disks: 10^{-2} 10⁻¹ M_{sun} (50-100 M_{iup}) in gas or tens to 100 ME_{arth} in solids.
- will become available in the future!

• **Class 0/I binaries (sep < 100 au) show a variety of circumbinary disks sizes** (few 10 to few 100 au), **morphologies**

• **Filamentary structures connecting to the disks are observed for systems > 100 au separations**, possibly tracing

• Presence of **localized and asymmetric enhancements of dust/gas temperatures (> 100 K) in circumbinary disks,**

***To scale**

ureira et al. 2022, Encalada et al. 2024, Maureira et al. in prep, PRODiGEE team References: Ohashi et al. 2023, Reynolds et al. 2024, Maureira et al. 2022, Encalada et al. 2024, Maureira et al. in prep, PRODIGEE team

Class 0/I binaries with sep > 100 au resolved down to 6-8 au