Observations of multiple body systems with ALMA

Collaborators: Babobab Liu, Paola Caselli, Hector Arce, Jaime E. Pineda, Leonardo Testi, Munan Gong, Felipe Alves, Chenghan Hsieh, Dominique Segura-Cox, Joaquin Zamponi and the ALMA-CAMPOS, FAUST ALMA Large Program, and NOEMA-PRODIGEE teams.

María José Maureira Postdoc at MPI for Extraterrestrial Physics

Observations of multiple body systems with ALMA

Very Young

Collaborators: Babobab Liu, Paola Caselli, Hector Arce, Jaime E. Pineda, Leonardo Testi, Munan Gong, Felipe Alves, Chenghan Hsieh, Dominique Segura-Cox, Joaquin Zamponi and the ALMA-CAMPOS, FAUST ALMA Large Program, and NOEMA-PRODIGEE teams.

María José Maureira Postdoc at MPI for Extraterrestrial Physics

From dense clouds to protostars and planets

'Embedded protostellar stage' Most active stellar accretion phase

Pre-Main sequence stars

Credit: M. Persson

From dense clouds to protostars and planets

'Embedded protostellar stage' Most active stellar accretion phase

Pre-Main sequence stars

Credit: M. Persson

Offner et al. 2023 (PPVII)

Dust emission

 $t \lesssim 10^4 - 2 \cdot 10^5 yr$

References: Maureira et al. 2020a, Reynolds et al. 2024, Maureira et al. in prep

References: Ohashi et el 2022, Hara et al. 2021, Maureira et al. in prep

Dust emission

 $t \lesssim 10^4 - 2 \cdot 10^5 yr$

References: Maureira et al. 2020a, Reynolds et al. 2024, Maureira et al. in prep

Dust emission

References: Maureira et al. 2020a, Maureira et al. 2022

Dust emission

References: Maureira et al. 2020a, Maureira et al. 2022

Dust emission

 $t \lesssim 10^4 - 2 \cdot 10^5 yr$

References: Maureira et al. 2020a, Reynolds et al. 2024, Maureira et al. in prep

References: Tobin et al. 2018, Reynolds et al. 2024

Dust emission

 $t \lesssim 10^4 - 2 \cdot 10^5 yr$

References: Maureira et al. 2020a, Reynolds et al. 2024, Maureira et al. in prep

References: Takakuwa et al. 2017, Alves et al. 2019, Narayanan et al. 2023, Brinch et al. 2016, Maureira et al. in prep

References: Takakuwa et al. 2017, Alves et al. 2019, Narayanan et al. 2023, Brinch et al. 2016, Maureira et al. in prep

Class 0/I binaries with sep > 100 au

References: Ohashi et al. 2023, Reynolds et al. 2024, Maureira et al. 2022, Encalada et al. 2024, Jorgensen et al. 2022

NGC 1333 IRAS 4A 1.3 mm

1.0" (300.0 AU)

IRAS 16293-2422

**

Hot dust and gas spots in Class 0 circumbinary disk

ALMA 3 mm at 6.5 au resolution

A1

A2

References: Maureira et al. 2020a, Oya et al. 2020, Maureira et al. 2022

Lot duct and gas spots in Class 0 circumbinary disk

References: Maureira et al. 2020a, Oya et al. 2020, Maureira et al. 2022

<u>gas apats in Class 0 circumbinary disk</u>

References: Maureira et al. 2020a, Oya et al. 2020, Maureira et al. 2022

<u>and gas spats in Class 0 circumbinary disk</u>

References: Maureira et al. 2020a, Oya et al. 2020, Maureira et al. 2022

<u>and gas spats in Class 0 circumbinary disk</u>

Hot gas/dust spots due to shocks?

Gong, Maureira et al. in prep

More examples of hot 'shocked' regions in circumbinary material?

CH₃OCH₃ with temperatures 100-130 K n(H2) ~ 10⁷ cm⁻³

Vastel et al. 2024, Alves et al. 2019

More examples of hot 'shocked' regions in circumbinary material?

CH₃OCH₃ with temperatures 100-130 K n(H2) ~ 10⁷ cm⁻³

Vastel et al. 2024, Alves et al. 2019

Hsieh et al. 2025 (submitted)

<u>Spectral index in circumbinary and circumstellar Class 0/I disks</u>

.3-3mm Spectral index α -

Maureira et al. in prep

Spectral index in circumbinary and circumstellar Class 0/I disks

Optically <u>thick</u>

2.53.01.52.03.51.0 $1.0\pm 0.1 \\ 3.0\pm 0.2$ 1.8 ± 0.1 RCrA SMM1C VLA 1623 W 1.7 ± 0.1 RCrA IRS7B IRAS16293 B 3.6 ± 0.2 3.0 ± 0.2 Class 0 Class 0 Class I Class I 50 au 20 au 20 au 1.4 ± 0.1 -0.4 ± 0.1 $1.6 \pm \ 0.1$ RCrA IRS7A IRS 63 Elias 29 CXO 34 2.8 ± 0.2 1.7 ± 0.1 3.2 ± 0.2 Class I Class I Class I Class I 10 au 20 au 10 au $1.6 \pm 0.1 \\ 3.6 \pm 0.2$ 1.9 ± 0.1 1.8 ± 0.1 VLA1623 A/B IRAS16293 A L1551 IRS5 3.4 ± 0.1 3.3 ± 0.2 2.07Class 0 Class I Class 0 50 au50 au50 au

Maureira et al. in prep

び

1.3-3mm Spectral index

Mass estimates: Circumbinary and circumstellar disks

Mass CB disk Gas ~ 0.07 M_{sun} (~70 M_{jup}) Dust ~ 180 M_{Earth}

Mass CB disk Gas ~ 0.05 M_{sun} (~50 M_{jup}) Dust ~ 170 M_{Earth}

Mass CB disk Gas ~ 0.1 M_{sun} (~100 M_{jup}) Dust ~ 300 M_{Earth}

Maureira et al. in prep

Mass estimates: Circumbinary and circumstellar disks

Mass CB disk Gas ~ 0.07 M_{sun} (~70 M_{jup}) Dust ~ 180 M_{Earth}

Mass CS disks Gas ~ 0.03 M_{sun} (~30 M_{jup}) Dust ~ 100 M_{Earth}

Mass CB disk Gas ~ 0.05 M_{sun} (~50 M_{jup}) Dust ~ 170 M_{Earth}

Mass CS disks Gas ~ 0.02 M_{sun} (~20 M_{jup}) Dust ~ 80 M_{Earth}

Mass CB disk Gas ~ 0.1 M_{sun} (~100 M_{jup}) Dust ~ 300 M_{Earth}

Mass CS disks Gas ~ 10⁻³ - 10⁻² M_{sun} (~1-10 M_{jup}) Dust ~ 2 - 40 M_{Earth}

Maureira et al. in prep

Orbital motion of the Class 0 binary IRAS 16293 A

Maureira et al. 2020a

Orbital motion of the Class 0 binary IRAS 16293 A

ALMA 3 mm at 6.5 au resolution

Relative orbital motion

Maureira et al. 2020a

Orbital motion of the Class 0 binary IRAS 16293 A

Maureira et al. 2020a

Orbital motion of the Class I binary L1551 IRS 5

Hernandez Garnica et al. 2024

Orbital motion of the Class I binary L1551 IRS 5

Parameter	Value	Units
a	44.0 ± 3.2	AU
e	0.27 ± 0.09	
Ω	161.3 ± 4.1	degrees
i	126.3 ± 5.0	degrees
ω	175.9 ± 15.1	degrees
T_0	2457329 ± 28	
Р	300 ± 38	years
Total mass	0.96 ± 0.17	M_{\odot}

Hernandez Garnica et al. 2024

- ullet(spirals, ring-like, disk-like, etc) and **misalignments** (CB vs CS disk)BUT not all show clear circumbinary disk structures (* in dust emission)
- \bullet accretion streamers.
- lacksquare**interpreted as shocks** (origin: binary accretion, accretion streamers from envelope, outflows?)
- appear to be optically thinner (tau < 1).
- Mass estimates for CB disks: $10^{-2} 10^{-1}$ M_{sun} (50-100 M_{jup}) in gas or tens to 100 ME_{arth} in solids.
- will become available in the future!

Class 0/I binaries (sep < 100 au) show a variety of circumbinary disks sizes (few 10 to few 100 au), morphologies

Filamentary structures connecting to the disks are observed for systems > 100 au separations, possibly tracing

Presence of localized and asymmetric enhancements of dust/gas temperatures (> 100 K) in circumbinary disks,

• Circumstellar disks are optically thick at 1.3 and 3 mm (in singles and multiple systems), while circumbinary disks

Orbital parameters are starting to be constrained for embedded Class 0 and I systems using ALMA and VLA, more

***To scale**

References: Ohashi et al. 2023, Reynolds et al. 2024, Maureira et al. 2022, Encalada et al. 2024, Maureira et al. in prep, PRODIGEE team