

Hydrodynamical simulations of circumbinary discs hosting circumbinary planets

Arnaud Pierens

CBPs across the HR diagram

14 Jan 2025

Panorama of observed circumbinary planets

Transiting circumbinary planets

- Most CPBs in the Neptune to sub-Jupiter mass range, and orbit around binaries with orbital periods > 7 days
- Interesting systems: Kepler-16 (close to the stability limit), Kepler-34 (high eccentricity), Kepler-47 (multiplicity), Kepler-1647 (long orbital period)
- low mutual inclination between planet and binary orbital planets \rightarrow formation in a circumbinary disc

In-situ formation of CBPs:Planetesimal accretion

- Eccentric disc gravity inhibits accretion by increasing planetesimals eccentricities and removing their perihelia alignment (*Marzari et al. 2013, Lines et al. 2016*)
- Turbulence can also prevent planetesimal accretion (Meschiari 2012)

Arnaud Pierens

CBPs across the H-R diagram

In-situ formation of CBPs: Pebble accretion

- Examine alternative scenario in which 10^3 km planetesimals are formed through SI and accrete pebbles
- Efficiency of SI and pebble accretion are reduced in turbulent discs ($\sim 50\%$ in VSI-active discs)

Hydrodynamical turbulence in CB discs

- Resonant mode coupling between inertialgravity waves and m=1 eccentric modes (*Papaloizou 2005, Barker & Ogilvie 2014*)
- In standard discs, parametric instability leads to turbulence with $\alpha \sim 10^{-3} 10^{-2}$

Hydrodynamical turbulence in CB discs

• parametric instability induces a Reynolds stress corresponding to $\alpha \approx 5.10^{-3}$

Consequences for dust settling

- significant settling of dust grains
- Deviation from the standard result $H_d \propto St^{-0.5}$ due to coherent vertical flows

Impact on pebble accretion rate

Consequence on the *in-situ* formation of CBPs

• 6-20 Myr are required to form a 10 M_{\oplus} core from pebble accretion

Consequence on the *in-situ* formation of CBPs

- Collisions velocities of silicate aggregates higher than fragmentation velocity close to the binary
- Forming a circumbinary planet *in-situ* at the cavity edge is difficult to achieve→ migration scenario

Migration of CBPs: *Kepler* systems

Arnaud Pierens

Stopping inward migration of CPBs

• CBPs get trapped near the cavity edge formed through different processes:

i) Strong positive (unsaturated) corotation torques

ii) Reversal of Lindblad torques due to significant planet eccentricity

• As the eccentric disc is the main driver of eccentricity growth, disc models with small eccentricity are needed

How to decrease disc eccentricity?

 Invoked mechanisms: self-gravity, effect of dust-back-reaction, partial gap opening

Arnaud Pierens

3D radiative models of circumbinary discs

- Difficult to explain CB disc structure with isothermal, 2D viscous models
- More sophisticated modelling is needed to constraint disc physics+planet migration
- 3D models recently developed with thermodynamical structure obtained by coupling FARGO3D with radiative transfert code RADMC3D

3D radiative models of circumbinary discs

3D radiative models of circumbinary discs

Cavity size in 3D: the case of Kepler-16

Arnaud Pierens

14 Jan 2025

Cavity size in 3D: the case of Kepler-34

Arnaud Pierens

Sizes and eccenticities of the cavity smaller in 3D

How to explain differences between 2D and 3D?

- Formation of inner cavity result from dissipation of spiral waves whose amplitude depend on cooling timescale
- In 2D, disc almost adiabatic \rightarrow constant AMF
- In 3D, regions with shorter cooling timescales \rightarrow significant radiative damping

Spiral wave dissipation in 2D and 3D

- Examine the disc response to a perturbing potential of amplitude \boldsymbol{A}
- Spirals appear weaker in 3D \rightarrow smaller amplitudes of spirals \rightarrow smaller cavities

- planets with mass corresponding to observed mass park too far from the binary
- planets with slightly higher mass have too small eccentricities

- Hydrodynamical turbulence renders both grain growth and pebble accretion inefficient close to the inner cavity → migration scenario is favoured
- 2D CB models tend to produce large cavities. This leads to migrating planets parking too far from the central binary
- In 3D, disc eccentricities and cavity sizes are smaller but fitting the orbital parameters of observed CBPs remains difficult.
- Result of missing physics ?

2025: Models of wind-driven CB discs

