

Finanziato dall'Unione europea NextGenerationEU

DashiBoard Alberto Vezzoso, Beta 80 spA

Spoke 3 Progetti Bandi a Cascata, 24/09, 2024

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

Project Overview

Problem

Data science and research must be integrated consistently with production-grade pipelines. Often, deploying data-driven solutions is time-consuming and even requires the intervention of a dedicated development team.

Aim

Orchestrate the work of researchers, data scientists, and developers through unified software. This allows research teams to conduct swift data exploration, create robust and reproducible analysis pipelines, and generate deployable, reusable solutions.

Output

Providing a minimalist—yet fully general—interface for data analysis and visualization able to automatically building, filtering and preprocessing functions for a given dataset;

Project Overview

Graph-theoretical Approach

The declarative style characterizing the entire Dashiboard approach allows us to represent filtering, preprocessing, and processing (cards) steps as a Directed Acyclic Graph (DAG).

On the one hand, analyzing the DAG structure enables efficient data and computational management.

On the other hand, we can cluster pipelines based on graph-theoretical invariants.

Reference

Vertechi, P., and Bergomi. M. G. (2023). "Machines of finite depth: Towards a formalization of neural networks." *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 37. No. 8.

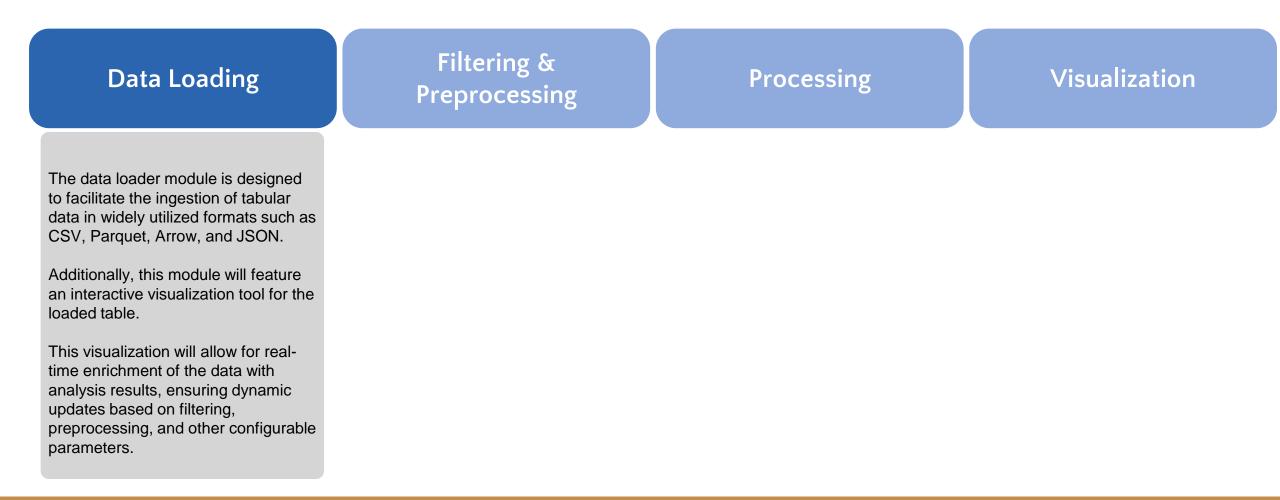
Bergomi, M. G., Ferri, M., Mella, A., & Vertechi, P. (2023). Generalized Persistence for Equivariant Operators in Machine Learning. *Machine Learning and Knowledge Extraction*, *5*(2), 346–358

Vertechi, P. (2022). Dependent optics. Applied Category Theory.

Bergomi, M. G., Ferri, M., Vertechi, P., & Zuffi, L. (2021). Beyond topological persistence: Starting from networks. *Mathematics*, 9(23), 3079.

Bergomi, M. G., & Vertechi, P. (2020). Rank-based persistence. Theory and Applications of Categories, Vol. 35, No. 9, pp. 228–260.

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing


Missione 4 • Istruzione e Ricerca

Data Loading	Filtering & Preprocessing	Processing	Visualization
The data loader module is designed to	Filtering widgets are outematically		
The data loader module is designed to acilitate the ingestion of tabular data in	Filtering widgets are automatically created according to the detected		
widely utilized formats such as CSV,	column type: continuous data are filtered		
Parquet, Arrow, and JSON.	through a double-range selection tool,		
Additionally, this module will feature an	checkboxes allow the filtering of categorical columns, and radio buttons		
nteractive visualization tool for the oaded table.	are used for boolean values.		
	The table visualization is updated		
This visualization will allow for real-time enrichment of the data with analysis	dynamically.		
results, ensuring dynamic updates based	Continuous columns (possibly grouped		
on filtering, preprocessing, and other	by categorical ones) can be		
configurable parameters.	preprocessed according to the most popular normalisation and		
	standardization techniques.		

Data Loading	Filtering & Preprocessing	Processing	Visualization
 The data loader module is designed to facilitate the ingestion of tabular data in widely utilized formats such as CSV, Parquet, Arrow, and JSON. Additionally, this module will feature an interactive visualization tool for the loaded table. This visualization will allow for real-time enrichment of the data with analysis results, ensuring dynamic updates based on filtering, preprocessing, and other configurable parameters. 	 Filtering widgets are automatically created according to the detected column type: continuous data are filtered through a double-range selection tool, checkboxes allow the filtering of categorical columns, and radio buttons are used for boolean values. The table visualization is updated dynamically. Continuous columns (possibly grouped by categorical ones) can be preprocessed according to the most popular normalisation and standardization techniques. 	 Processing and analysis are managed through cards, a simple yet parameterizable and modular interface. We foresee the following cards: Clustering Interpolation & Prediction (GLM, Kernel Methods, MLP, CNN, RNN, Parametric Machines) Classification (GLM, Kernel Methods, MLP, CNN, Parametric Machines) Projection (Dimensionality Reduction) Wild Card 	
ICSC Italian Research Center on High-Performan	ice Computing, Big Data and Quantum Computing		Missione 4 • Istruzione e Ricerca

P

A in

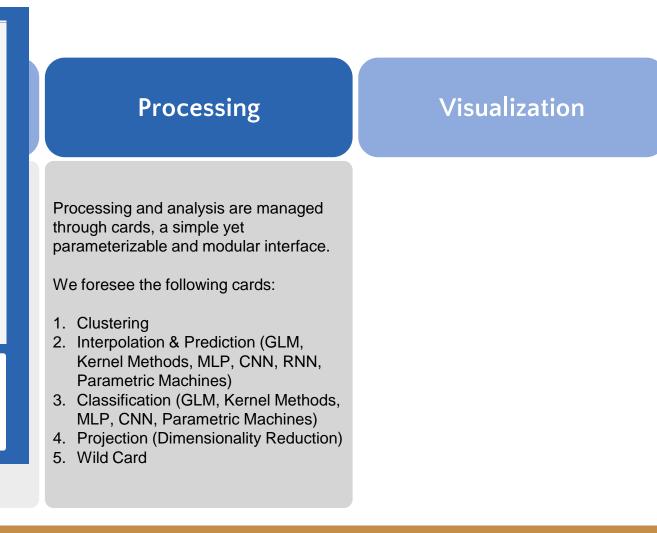
lo

Т

er

re

or

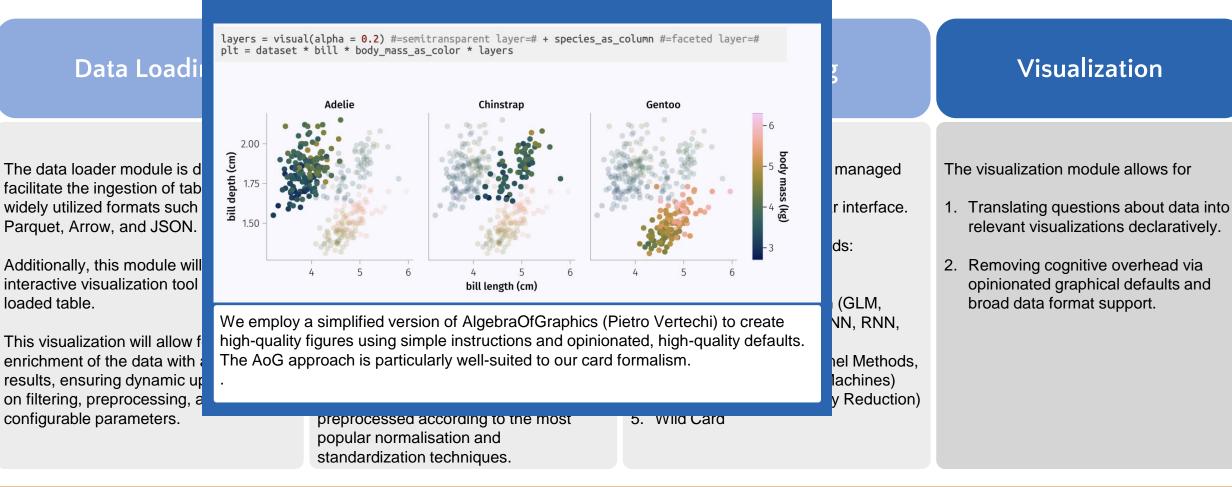


Technical Objectives, Methodologies and Solutions

oad Filter Process	Spreadsheet	Chart	Pipelines	
Predict	species	island	bill_length_mm	bill_depth_n
Inputs	Adelie	Torgersen	39.1	18.7
+ :bill_length_mm + :bill_depth_mm + :body_mass_g	Adelie	Torgersen	39.5	17.4
	Adelie	Torgersen	40.3	18
Target	Adelie	Torgersen	36.7	19.3
:flipper_length_mm	Adelie	Torgersen	39.3	20.6
	Adelie	Torgersen	38.9	17.8
Outputs	Adelie	Torgersen	39.2	19.6
:prediction_flipper :error_flipper	Adelie	Torgersen	41.1	17.6
	Adelie	Torgersen	38.6	21.2
Method	Adelie	Torgersen	34.6	21.1
noise:	Adelie	Torgersen	36.6	17.8
normal	Adelie	Torgersen	38.7	19
binomial	Adelie	Torgersen	42.5	20.7
gamma	Adelie	Torgersen	34.4	18.4
inversegaussian	Adelie	Torgersen	46	21.5
poisson	Adelie	Biscoe	37.8	18.3

Cards help users select the right parameters and algorithms for their tasks. They can be automatically composed as cells in a notebook, and an intelligent autocomplete feature allows for quick parameterization of complex algorithms.

popular normalisation and standardization techniques.


Data Loading	Filtering & Preprocessing	Processing	Visualization
The data loader module is designed to facilitate the ingestion of tabular data in widely utilized formats such as CSV, Parquet, Arrow, and JSON. Additionally, this module will feature an interactive visualization tool for the loaded table. This visualization will allow for real-time enrichment of the data with analysis results, ensuring dynamic updates based on filtering, preprocessing, and other configurable parameters.	 Filtering widgets are automatically created according to the detected column type: continuous data are filtered through a double-range selection tool, checkboxes allow the filtering of categorical columns, and radio buttons are used for boolean values. The table visualization is updated dynamically. Continuous columns (possibly grouped by categorical ones) can be preprocessed according to the most popular normalisation and standardization techniques. 	 Processing and analysis are managed through cards, a simple yet parameterizable and modular interface. We foresee the following cards: Clustering Interpolation & Prediction (GLM, Kernel Methods, MLP, CNN, RNN, Parametric Machines) Classification (GLM, Kernel Methods, MLP, CNN, Parametric Machines) Projection (Dimensionality Reduction) Wild Card 	 The visualization module allows for 1. Translating questions about data into relevant visualizations declaratively. 2. Removing cognitive overhead via opinionated graphical defaults and broad data format support.

CS.

Involved Staff

Francesco Silanos, Eng.Cristiano Notargiacomo, Eng.Gabriele Aprile, Eng.Scientific CoordinatorSenior ArchitectSoftware Engineer			
Scientific Coordinator Senior Architect Software Engineer	Francesco Silanos, Eng. Cristiano Notargiacomo, Eng	Gabriele Aprile, Eng.	Pietro Vertechi, PhD.
	Scientific Coordinator Senior Architect	Software Engineer	ML and Applied Mathematic Domain Expert. Author of AoG

Timescale, Milestones, SAL

1st Quarter	-	2nd Quarter	3rd Quarter	4th Quarter
Blueprint		Prediction & Interpolation	Classification Card	Wild Card
Data Loader (I	DuckDB)	Cards	Clustering and Projection	Efficient data orchestration
Filtering & Pre	processing	Visualization (e.g., gt vs preds, loss function, metrics)	Visualization Automated reporting	DAG formalism
		Preliminary tests on N- body problem		Pipeline Export