

Finanziato dall'Unione europea NextGenerationEU

TEcniche non Convenzionali per l'anaLisi di immagini Astrofisiche

(TECLA) Salvatore Miccichè, UNIPA-DiFC salvatore.micciche@unipa.it

Spoke 3 Progetti Bandi a Cascata, 24/09/2024

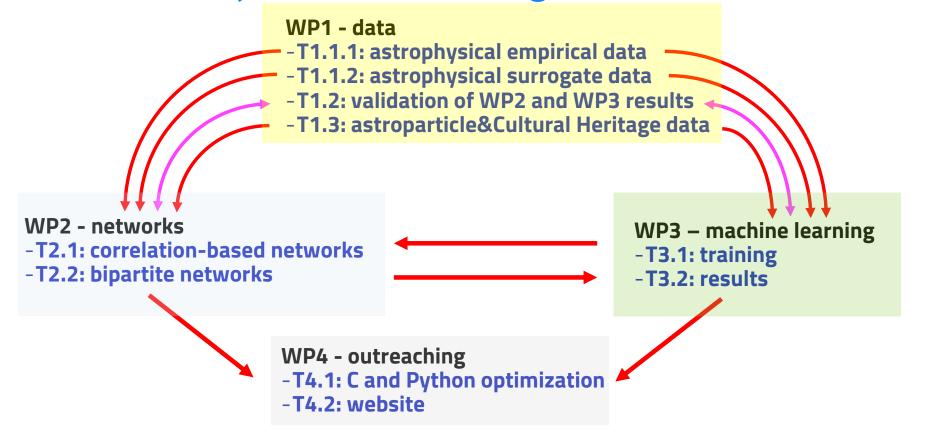
ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

Project Overview

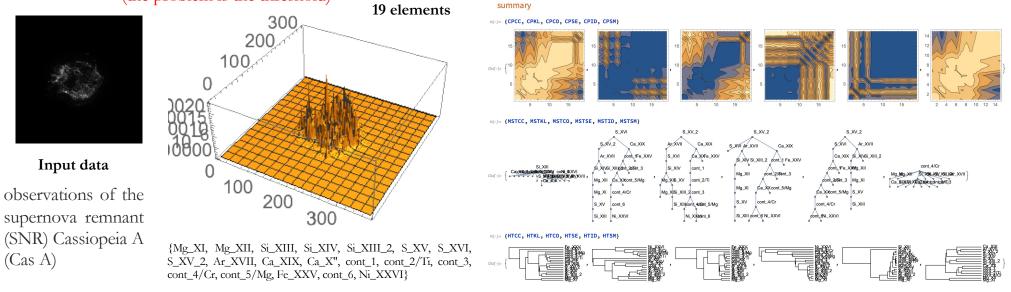
The project aims at developing innovative techniques for the detection, recognition and classification of coherent structures in astrophysical images. It is planned to study astrophysical images using statistical physics techniques, time series analysis techniques, techniques based on information theory and techniques based on Artificial Intelligence.

On the one hand, we will be interested in investigating the correlations existing between pixels present in the images of X-ray emissions of different metals. This will be done starting from the construction of a correlation-based network of pixels and the subsequent use of filtering techniques that allow us to identify the most significant correlations between pixels.


On the other hand, we will exploit the possibility of using machine learning techniques to enhance the power of the methodologies previously investigated.

The methodologies developed during the project will then be tested with other types of data, mainly of astroparticle nature and of Cultural Heritage.

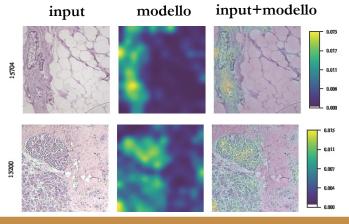
Technical Objectives, Methodologies and Solutions



Technical Objectives, Methodologies and Solutions

- WP2
- correlations existing between pixels in X-ray emission images of different metals construction of a correlation-based network of pixels. The most scientifically relevant aspect concerns the choice of the similarity measure between the numerical matrices representing the astrophysical image. Potential candidates are the Frobenius and Kullback-Leibler distances.
 - Subsequently, we will use filtering techniques that allow us to identify the most significant correlations between pixels. We will use unsupervised clustering techniques in order to identify anisotropies and typify supernova remnants.
 - We will evaluate an investigation approach based on a description in terms of Bipartite Networks between elements and pixels (the problem is the threshold)

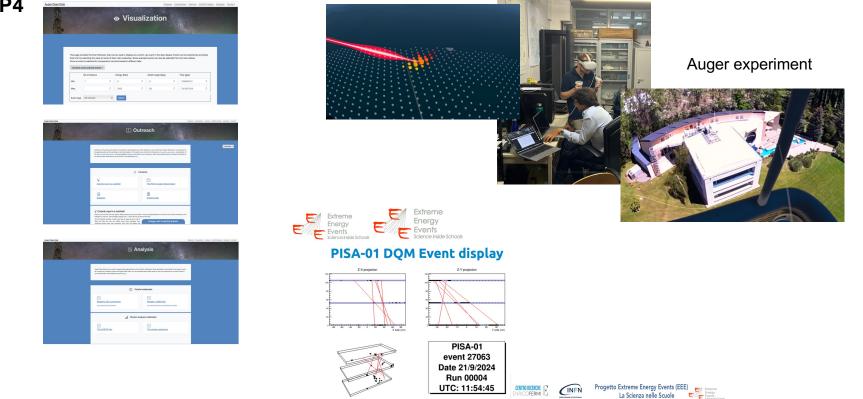




Technical Objectives, Methodologies and Solutions

- traditional statistical analysis can be effectively combined with methods borrowed from artificial intelligence such as supervised or unsupervised Machine Learning and feature selection techniques.
 - very accurate 3-D MHD simulations will be used as datasets to train AI methods in both supervised and unsupervised mode.
 - Furthermore, they will also allow an effective validation of the obtained results.
 - We will also explore the parameter space through feature selection techniques in order to (i) better understand the physical link between each feature and the classification and (ii) avoid or mitigate the risk of parameter *overfitting*.

The Transformer architecture was proposed for natural language processing and is an encoder-decoder architecture characterized by the so-called attention layer. Vision Transformers (ViT) are customized versions of the original Transformer that inherit the specificities of the text transformer, namely the ability to model long-term relationships in the data: this feature could be important in the case of astronomical images where we expect long-range relationships between pixels. Transformers and their attention module will be used to define a model explainability mechanism that highlights which parts of the image contribute the most to pattern identification or supervised classification. Therefore, the possibility of having simulated numerical data for image generation will be crucial to augment the learning datasets, using augmentation techniques.



Technical Objectives, Methodologies and Solutions

Italia**domani** PIANO NAZIONALE

Involved Staff and new recruitments

Staff	Research Area	Role	
Salvatore Miccichè	Complex Systems and Complex Networks	PO	8
Rosario N. Mantegna	Statistical Physics and Complex Systems	PO	D.
Giosuè Lo Bosco	Machine learning and deep learning	PA	
Claudio Fazio	Physics Education	PO	8
Marco Miceli	Astrophysics	PA	B
Maria Luisa Saladino	Chemistry Cultural Heritage	PA	0
Giovanni Marsella	Astroparticles	PO	

To be hired Postdoc with strong IT skills

- Python
- **Machine learning**
- **Big data**

(ASTRO)data scientist

Consultancy

- Website for
- Public Engagement
- **Online calculations**

Involvement in WPs
WP1
Marco Miceli
Giovanni Marsella
Maria Luisa Saladino
Postdoc
WP2
Salvatore Miccichè
Rosario N Mantegna
Postdoc
WP3
Giosuè Lo Bosco
Postdoc
WP4
Claudio Fazio
Postdoc
Consultancy

Timescale, Milestones, SAL

							ore mese pe	er mese												
docente	ruolo	costo	ORE 2	2024	ORE 2025	ORE TOTALE	202408	202409	202410	202411	202412	202501	202502	202503	202504	202505	202506	202507	check 2024	check 2025
micciche	PO	7	3	20	330	350	30	25	35	30	15	30	20	20	30	30	40	45	-115	115
mantegna	PO	7	3	20	180	200	20	20	25	25	20	25	30	20	15	0	0	0	-90	90
lo bosco	PA	4	В	100	100	200	20	30	30	15	15	10	20	10	10	10	20	10	-10	10
fazio	PO	7	3	20	130	150	0	15	15	0	0	10	10	0	0	30	40	30	-10	10
miceli	PA	4	8	60	60	120	10	25	25	10	10	0	5	5	5	5	10	10	-20	20
saladino	PA	4	8	85	15	100	10	30	35	5	10	0	0	0	0	0	10	0	-5	5
marsella	PO	7	3	85	15	100	0	45	45	0	0	0	0	0	0	0	10	0	-5	5
							90	190	210	85	<mark>70</mark>	75	85	55	60	75	130	95		
							ore		490	ore		230	ore		200	ore		300		
							5570	11745 🛛 💆	13080	5455	4235	5225	5580	3640 🛛	4005	5100	8490	6435		
							costo		30395	costo		14915	costo		13225	costo		20025		
							costo cumula	to	30395	costo cumula	osto cumulato 45310 d		costo cumulato 5853		58535	costo cumula	to	78560		0
									SAL1			SAL2			SAL3			SAL4		
											<mark>645</mark>							575		
											40085							38475		
											2024							2025		

Italia**domani**

Timescale, Milestones, SAL

Milestone	Data¤	descrizione¤	SAL (<u>Euro</u>)	
			¤	TOTAL BUDGET
M1 🗖	04/11/2024¤	WP1: preparation of astrophysical, astroparticle and	30395.00	140944 00
		cultural heritage data: agreements with WP2 and WP3		149844,00
		about the data format and their description. Start of the	+postdoc 1/4	
		procedures for the recruitment of the research fellow.	postate in	
M2¤	04/02/2025¤	WP1: final delivery of astrophysical, astroparticle and	14915.00¤	
		cultural heritage data.		
		WP2: start data analysis with correlation-based		
		networks.¶	+postdoc 2/4	
		WP3: start data analysis with AI techniques.	Postare -	
		WP4: start procedures for the selection of the		
		consultancy firm. ¤		Staff 78560
M3¤	04/05/2025¤	WP2: completion of correlation-based network	13225.00¤	Postdoc 30000
		analyses. Start of data analysis with bipartite networks.		Consultancy 25000
		WP3: continuation of data analysis with AI techniques.	+postdoc 3/4	133560
		WP4: start of the consulting firm activities. WP2 and		
		WP3 requirements on the software specifications.		15% (S+P) 16284
M4¤	04/08/2025¤	WP1: Validation activities of WP2 and WP3 results.	20025.00¤	TOTAL 149844
	15 C 94000	Validation activities on WP4 activities.		
		WP2: completamento delle analisi riguardanti i network	+ consultancy	
		bipartiti.¶	+postdoc 4/4	
		WP3: completion of analyses regarding bipartite	+15%	
		networks.		
		WP4: WEB site delivery and testing with selected		
		schools. Delivery of software in Python and C.		