

Finanziato dall'Unione europea NextGenerationEU

Ministero dell'Università e della Ricerca

The OpenGADGET3 code for cosmological simulations

- An update in preparation of the Key Science Projects -

Spoke 3 Technical Workshop, Bologna Dec 17-19, 2024

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Milena Valentini

Dipartimento di **Fisica** Dipartimento d'Eccellenza 2023-2027

The *OpenGADGET3* **code: a state-of-the-art code for HPC**

-
-

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Technical Objectives, Methodologies and Solutions

The OpenGadget3 code

USM

- **TreePM+SPH** code
- **Highly optimised code:** MPI parallelised + OpenMP
- **Two hydro solvers:** improved SPH formalism or MFM
- **Two sub-grid models** (Muppi, and one based on Springel&Hernquist 2003)
- **Several modules for sub-resolution physics:** star formation, stellar feedback, BH accretion and feedback, chemical enrichment, dust evolution, magnetic fields, cosmic rays
- **Runs on CPUs and GPUs**

- description of a multi-phase ISM with H_2 -based star formation
- thermal, kinetic, and low-metallicity stellar feedback
- improved cooling table interpolation
- stellar evolution and chemical enrichment
- angular-momentum-dependent gas accretion, dynamical friction, spin evolution
- isotropic, thermal AGN feedback + mechanical AGN feedback

Missione 4 • Istruzione e Ricerca

formation and evolution of dust, and dust-assisted cooling

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

MUPPI sub-resolution model

Technical Objectives, Methodologies and Solutions

The OpenGadget3 code

USM

- **TreePM+SPH** code
- **Highly optimised code:** MPI parallelised + OpenMP
- **Two hydro solvers:** improved SPH formalism or MFM
- **Two sub-grid models** (Muppi, and one based on Springel&Hernquist 2003)
- **Several modules for sub-resolution physics:** star formation, stellar feedback, BH accretion and feedback, chemical enrichment, dust evolution, magnetic fields, cosmic rays
- **Runs on CPUs and GPUs**

Core team in Trieste: S. Borgani, L. Tornatore, G. Murante, M. Valentini, T. Castro, P. Monaco, G. Taffoni, A. Damiano, G. Granato, D. Goz, P. Barai, M. Gitton-R., A. Saro, M. Viel

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Develop Open-GADGET further:

- **- including additional physics modules**
- **- enhancing code modularity and readability**
- **- improving code performance**

Core teams in Trieste and Munich

Missione 4 • Istruzione e Ricerca

Main tasks within the WP 2 of Spoke 3

- We moved our code to GitLab
- We defined a more accurate working strategy
- **→ Quite large (> 30 people** from different institutes) user community

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

Accomplished Work, Results

The OpenGADGET3 project aims at making the use of the many complex physics modules more user friendly.

Substantial effort in **cleaning** and making **more transparent** the definition of the **code configurations** and of

Missione 4 • Istruzione e Ricerca

Accomplished Work, Results

-
- Collection of the files setting the many parameters.
- Construction of a **reference structure for the file configure** several **reference production runs** and files of parameters for the OpenGADGET3 c

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Re-structuring of the code (**modularity**)

Cleaning the code **and documenting** its status

Missione 4 • Istruzione e Ricerca

- The OpenGADGET3 project aims at making the use of the many complex physics modules more user friendly.
- Substantial effort in **cleaning** and making **more transparent** the definition of the **code configurations** and of the files setting the many parameters.
- Construction of a **reference structure for the files which configure** several **reference production runs and files of parameters** for the OpenGADGET code.
- **Bug fixing** and tackling subtleties of the sub-grid modelling.

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Accomplished Work, Results

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

-
-

Accomplished Work, Results

Adopting different numerical prescriptions for BH re-positioning has an impact on **BH dynamics**, AGN feedback, BH-BH mergers

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Damiano, Valentini, Borgani, Tornatore+ 2024

DYNFRIC

1. GPU scalability

- OpenGadget has most of the modules running on GPUs (thanks to A. Ragagnin).
- We are assessing in detail the scalability of this implementation in order to highlight the blocking factors, mitigate their impact or turn to new strategies with greater parallelism

2. Performance issues

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Detailed profiling with the assistance of POP and SPACE Centers of Excellence

Coordinator of the work: L. Tornatore

2×1024³, 120 Mpc, up to **512 GPUs** 2×2048³, 240 Mpc, up to **1024 GPUs**

 2048^3 -- from 064 to 256 Nodes

Missione 4 • Istruzione e Ricerca

1) GPU scalability: Speed-Up

 1024^3 -- from 008 to 128 Nodes

Ongoing: Assessing scalability, targeting performance issues

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

1) GPU scalability: more in detail

2×1024³, 120 Mpc, up to **512 GPUs**

1024³ TOTAL run time scaling-- from 8 to 128 nodes

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

1) GPU scalability: more in detail

- Tree Walk \rightarrow Barnes&Hut is not GPU-friendly
- Communication

The gravity tree has some noteworthy performance issues, mostly in

Communication & Nodes update have scalability issues in the SPH part, too.

- In the longer term (Dec 2025), we aim for a different implementation: We have extracted a kernel of the code which reproduces the conditions under which gravity is computed in OG3 and which will feature the new, restructured implementation of the tree, where
- the walk is done for a bunch of particles all together instead of for every single particle, by grouping particles per tree node (they belong to);
- 2. the Barnes and Hut scheme is not adopted anymore: rather, we opt for a direct computation of the force within a given radius, to avoid to check whether nodes have to be opened and the tree walked further.

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Finanziato dall'Unione europea extGenerationEU

Ongoing: Assessing scalability, targeting performance issues

1) GPU scalability: as for now…

Two strategies have been tested:

kernel 1: reproduces the standard OG3 tree walk strategy —> specific tree walk for each particle (each particle has a specific seed number)

kernel 2: reproduces a modified tree walk strategy, where the geometric centre of the node is considered instead of different tree leaves —> common tree walk for a bunch of particles

> **Lower threads divergence, higher branch efficiency and better parallelism**

Comparison of two kernels through NVIDIA's NCU profiler

Increased branch efficiency due to a much smaller thread divergence

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

-- H

Ongoing: Assessing scalability, targeting performance issues

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

-- MPI Load

Ongoing: Assessing scalability, targeting performance issues

2) Performance issues: vectorization 100 -80 Percentage(%) The low IPC (Instructions Per Cycle), although constant with -60 decreasing workload, indicates that the computational efficiency is not high. 40 Further inspection returned that in particular the -20 **vectorization ratio is very small** (~10%) and limited to 128bits registers Ω **EXACTE THE MAIN THE MAIN TE-THE MAIN TE-FORMULATE THE data structures** -100 **that now consists in Arrays of (large)Structures**- 80 Number of processes 2048 4096 8192 Percentage(%) -60 Elapsed time (sec) 47.714394 18.755917 25.446344 Efficiency 0.937549 0.635991 1.0 - 40 Speedup 1.875098 1.0 2.543965 Average IPC 0.961925 0.970340

3.190112

 -20

-- 0

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

3.187294

Average frequency (GHz)

Vectorization ratio achieved on average (= fraction of vector floating point (FP) instructions issued to the total number of FP instructions) under different assumptions.

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

We experimented AoS, AosS and SoA with some carefully crafted loops to

We have tested the effect of different data layout on the achievable vectorization in a loop that reproduces the N-Body pattern, assuming that:

- A fraction of particle is active
- Every active particle interacts with its neighbours
- Neighbours are not close in memory

Also, we have tested the effect of enhancing the memory contiguity (**v1** VS **v2**) on different compilers (**gnu** VS **intel**)

- enhance auto-vectorization by the compiler (AoS, SoA)
- test compilers vector extensions (AosSv)
- explicitly use vector intrinsics (AosSi, SoAi)

Cons of vector instructions: every instruction requires more CPU cycles, the CPU frequency is generally decreased for an intense vector burst

2) Performance issues: vectorization

2) Performance issues: vectorization

Credits: L. Tornatore

Results from LEONARDO DCGP, obtained by measuring performance counters via PAPI

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Timina run-time A09 54 59 50 50A A0S 654 653 50A 50A A09 53 50 50 50 50 A09 591 592 502 50AV VI 1CX vi gcc v∠ gcc $V\angle$ ICX

1. A large vectorization fraction with the wrong data layout is not an advantage (e.g. AosSv) because a larger # of instructions is issued and the cpu frequency is decreased

- 2. Smaller structures offer \sim 10% of gain in terms of run-time (e.g. AosSv)
- 3. Memory contiguity seems to be the most promising trick (go from v1 to v2), especially if the compiler is good in spotting opportunities (see icx vs gcc in v2.AoS)

3) CPU optimization

Comparison of the required time per time step at different numbers of particles in each time bin.

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Loop restructuring leads to a 2x performance in timesteps with a small # of particles (blue VS black curves)

Updates on the gradient computation and more precise memory allocation further increase the performance (red VS blue)

In total, these improvements speed up the calculation of the smallest time bins by up a factor of ~5 (red VS black).

4) Topology awareness (= capability of the code to explore the NUMA topology of a machine)

Framework (developed within SPACE) to explore the topology of a given infrastructure and build a hierarchy of MPI communicators

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

A hierarchy of communicators groups the MPI tasks based on their NUMA affinity.

Every MPI task can understand on what node it is running and which are the other MPI tasks that run on the same node. The tasks running on the same node are grouped in a dedicated communicator and share the node memory via the MPI's shared-memory windows.

Every node has a designated master task that is in charge of MPI communications with other nodes, and the master tasks of all nodes participate in a dedicated MPI communicator.

Final goal: avoid too many communications and develop algorithms that are increasingly communication-free.

Next Steps and Expected Results

SLOTH: Shedding Light On dark matter wiTH cosmological simulations

Key Science Projects

Missione 4 • Istruzione e Ricerca

EAGER: Evolution of gAlaxies and Galaxy clustErs in high-Resolution cosmological simulations 1.

Milena Valentini, Stefano Borgani, Tiago Castro, Luca Tornatore, Matteo Viel, Alice Damiano, Pierluigi Monaco, Giuliano Taffoni

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Stefano Borgani, Milena Valentini, Luca Tornatore, Alice Damiano, Alex Saro, Giuliano Taffoni, Tiago Castro

2.

So far, results in line with timescale, milestones and KPIs identified.