
Spoke 3 General Meeting, Elba 5-9 / 05, 2014Spoke 3 General Meeting, Elba 5-9 / 05, 2014Spoke 3 Technical Workshop, Bologna Dec 17-19, 2024

The OpenGADGET3 code for cosmological simulations

- An update in preparation of the Key Science Projects -

Milena Valentini

The Open GADGET 3 code: a state-of-the-art code for HPC

Numerical cosmology
Structure formation and evolution

Scientific rationale

Credits: K. Dolag

Credits: S. Borgani

Technical Objectives, Methodologies and Solutions
The OpenGadget3 code

USM

LMU TreePM+SPH code
Highly optimised code: MPI parallelised + OpenMP
Two hydro solvers: improved SPH formalism or MFM
Two sub-grid models (Muppi, and one based on Springel&Hernquist 2003)
Several modules for sub-resolution physics: star formation, stellar feedback, BH accretion
and feedback, chemical enrichment, dust evolution, magnetic fields, cosmic rays

Runs on CPUs and GPUs

Develop Open-GADGET further:

- including additional physics modules

- enhancing code modularity and readability

- improving code performance

Core teams in Trieste and Munich

Main tasks within the WP 2 of Spoke 3

star formation

dust

BH
angular-momentum-dependent gas accretion, dynamical friction, spin evolution
isotropic, thermal AGN feedback + mechanical AGN feedback

formation and evolution of dust, and dust-assisted cooling

thermal, kinetic, and low-metallicity stellar feedback
description of a multi-phase ISM with - based star formationH2

improved cooling table interpolation
stellar evolution and chemical enrichment

MUPPI sub-resolution model

Technical Objectives, Methodologies and Solutions
The OpenGadget3 code

USM

LMU TreePM+SPH code
Highly optimised code: MPI parallelised + OpenMP
Two hydro solvers: improved SPH formalism or MFM
Two sub-grid models (Muppi, and one based on Springel&Hernquist 2003)
Several modules for sub-resolution physics: star formation, stellar feedback, BH accretion
and feedback, chemical enrichment, dust evolution, magnetic fields, cosmic rays

Runs on CPUs and GPUs

Develop Open-GADGET further:

- including additional physics modules

- enhancing code modularity and readability

- improving code performance

Core teams in Trieste and Munich

Main tasks within the WP 2 of Spoke 3

M. Gitton-R., A. Saro, M. Viel

We moved our code to GitLab

We defined a more accurate

working strategy

Quite large (> 30 people

from different institutes)

user community

 Sala, Valentini, Biffi and Dolag, to be subm.

Accomplished Work, Results

The OpenGADGET3 project aims at making the use of the many complex physics modules more user friendly.

Substantial effort in cleaning and making more transparent the definition of the code configurations and of
the files setting the many parameters.

Construction of a reference structure for the files which
configure several reference production runs
and files of parameters for the OpenGADGET3 code.

Accomplished Work, Results

Re-structuring of the code (modularity)

Cleaning the code and documenting its status

The OpenGADGET3 project aims at making the use of the many complex physics modules more user friendly.

Substantial effort in cleaning and making more transparent the definition of the code configurations and of
the files setting the many parameters.

Construction of a reference structure for the files which configure several reference production runs and
files of parameters for the OpenGADGET code.

Bug fixing and tackling subtleties of the sub-grid modelling.

Accomplished Work, Results

Given initial BH spin and mass post-merger BH spin vector

Sub-resolution accretion disc links BH accretion on resolved scales to BH spin evolution

BH accretion rate disc mass accretion episodes

BH spin direction and magnitude defined by angular momentum of accreting gas

BH radiative efficiency
dependent on BH spin

Sala, Valentini, Biffi and Dolag 2024

Accomplished Work, Results

Accomplished Work, Results
Adopting different numerical prescriptions

for BH re-positioning has an impact
on BH dynamics, AGN feedback, BH-BH mergers

Damiano, Valentini, Borgani, Tornatore+ 2024

Ongoing: Assessing scalability, targeting performance issues

1. GPU scalability  
 
OpenGadget has most of the modules running on GPUs (thanks to A. Ragagnin). 
 
We are assessing in detail the scalability of this implementation in order to highlight the
blocking factors, mitigate their impact or turn to new strategies with greater parallelism 
 

2. Performance issues 
 
Detailed profiling with the assistance of POP and SPACE Centers of Excellence

Coordinator of the work: L. Tornatore

2×1024³, 120 Mpc, up to 512 GPUs 2×2048³, 240 Mpc, up to 1024 GPUs
1) GPU scalability: Speed-Up

Ongoing: Assessing scalability, targeting performance issues

Running a suite of tests, we are assessing in detail the scalability, from 4 nodes up to the entire Leonardo

Ongoing: Assessing scalability, targeting performance issues

1) GPU scalability: more in detail

2×1024³, 120 Mpc, up to 512 GPUs

Ongoing: Assessing scalability, targeting performance issues

2×1024³, 120 Mpc, up to 512 GPUs

SPH

TREE

1) GPU scalability: more in detail

Ongoing: Assessing scalability, targeting performance issues

1) GPU scalability: more in detail

The gravity tree has some noteworthy performance issues, mostly in  

• Tree Walk à Barnes&Hut is not GPU-friendly
• Communication

Communication & Nodes update have scalability issues in the SPH part, too.
 
In the longer term (Dec 2025), we aim for a different implementation:

We have extracted a kernel of the code which reproduces the conditions
under which gravity is computed in OG3 and which will feature the new,
restructured implementation of the tree, where

1. the walk is done for a bunch of particles all together instead of for every
single particle, by grouping particles per tree node (they belong to);

2. the Barnes and Hut scheme is not adopted anymore: rather, we opt for a
direct computation of the force within a given radius, to avoid to check
whether nodes have to be opened and the tree walked further.

Ongoing: Assessing scalability, targeting performance issues

1) GPU scalability: as for now…

Two strategies have been tested:

kernel 1: reproduces the standard OG3
tree walk strategy —> specific tree walk
for each particle (each particle has a
specific seed number)

kernel 2: reproduces a modified tree
walk strategy, where the geometric
centre of the node is considered instead
of different tree leaves —> common
tree walk for a bunch of particles

Lower threads divergence,
higher branch efficiency
and better parallelism

Comparison of two kernels through NVIDIA’s NCU profiler

Increased branch efficiency due to a much smaller thread divergence

Ongoing: Assessing scalability, targeting performance issues

With the assistance of the POP CoE, and within the SPACE
CoE, we are profiling in details the code’s behaviour. 
 
The results are summarized in tables, as sketched in the
figure on the left 
(here the example is for the gravity-tree; rows are different
metrics, columns refer to the total number of threads)
 
from which some key indicators can be collected

2) Performance issues: vectorization

Ongoing: Assessing scalability, targeting performance issues

2) Performance issues: vectorization

The low IPC (Instructions Per Cycle), although constant with
decreasing workload, indicates that the computational
efficiency is not high. 
Further inspection returned that in particular the
vectorization ratio is very small (~10%) and limited to
128bits registers 
 
 the main target is to re-formulate the data structures
that now consists in Arrays of (large)Structures

Ongoing: Assessing scalability, targeting performance issues

Vectorization ratio achieved on average (= fraction of vector floating
point (FP) instructions issued to the total number of FP instructions)
under different assumptions.

We have tested the effect of different data layout on the
achievable vectorization in a loop that reproduces the N-Body
pattern, assuming that:
- A fraction of particle is active
- Every active particle interacts with its neighbours
- Neighbours are not close in memory

We experimented AoS, AosS and SoA with some carefully crafted
loops to
- enhance auto-vectorization by the compiler (AoS, SoA)
- test compilers vector extensions (AosSv)
- explicitly use vector intrinsics (AosSi, SoAi)

Also, we have tested the effect of enhancing the memory
contiguity (v1 VS v2) on different compilers (gnu VS intel)

Cons of vector instructions: every instruction requires more CPU
cycles, the CPU frequency is generally decreased for an intense
vector burst

2) Performance issues: vectorization
Credits: L. Tornatore

Ongoing: Assessing scalability, targeting performance issues

2) Performance issues: vectorization
Credits: L. Tornatore

Results from LEONARDO DCGP, obtained by measuring performance counters via PAPI

1. A large vectorization
fraction with the wrong
data layout is not an
advantage (e.g. AosSv)
because a larger # of
instructions is issued
and the cpu frequency is
decreased

2. Smaller structures offer
~10% of gain in terms of
run-time (e.g. AosSv)

3. Memory contiguity
seems to be the most
promising trick (go from
v1 to v2), especially if
the compiler is good in
spotting opportunities
(see icx vs gcc in
v2.AoS)

Ongoing: Assessing scalability, targeting performance issues

3) CPU optimization

Comparison of the required time per time step at
different numbers of particles in each time bin.

black: old

blue: improved loops

red: improved loops and
gradient computation

Loop restructuring leads to a 2x performance in
timesteps with a small # of particles (blue VS black
curves)

Updates on the gradient computation and more
precise memory allocation further increase the
performance (red VS blue)

In total, these improvements speed up the
calculation of the smallest time bins by up a factor
of ~5 (red VS black).

Credits: K. Dolag

Ongoing: Assessing scalability, targeting performance issues

4) Topology awareness

Framework (developed within SPACE) to explore the topology of a
given infrastructure and build a hierarchy of MPI communicators

 (= capability of the code to
explore the NUMA topology of a machine)

A hierarchy of communicators groups the MPI tasks based on
their NUMA affinity.
Every MPI task can understand on what node it is running
and which are the other MPI tasks that run on the same node.
The tasks running on the same node are grouped in a
dedicated communicator and share the node memory via the
MPI’s shared-memory windows.

Every node has a designated master task that is in charge of
MPI communications with other nodes, and the master tasks
of all nodes participate in a dedicated MPI communicator.

Final goal: avoid too many communications and
develop algorithms that are increasingly
communication-free.

Credits: L. Tornatore and SPACE

Next Steps and Expected Results

SLOTH: Shedding Light On dark matter wiTH cosmological simulations

EAGER: Evolution of gAlaxies and Galaxy clustErs in high-Resolution cosmological simulations

Key Science Projects

Milena Valentini, Stefano Borgani, Tiago Castro, Luca Tornatore, Matteo Viel, Alice Damiano, Pierluigi Monaco, Giuliano Taffoni

Stefano Borgani, Milena Valentini, Luca Tornatore, Alice Damiano, Alex Saro, Giuliano Taffoni, Tiago Castro

1.

2.

So far, results in line with timescale, milestones and KPIs identified.

