

Finanziato dall'Unione europea NextGenerationEU

Wind in the Ionised Nuclear Environment (WINE) Code optimisation and parallelisation Ferretti S., De Luca F., Condò P., Luminari A.

Spoke 3 II Technical Workshop, Bologna Dec 17 - 19, 2024

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

Technical Objectives, Methodologies and Solutions

WINE is hugely time-consuming, since it requires multiple calls to a public photoionisation code (XSTAR, Cloudy) + a Monte-Carlo modellisation of the emission profiles, which has to be convolved with the computed photoionisation spectrum

Three main lines of action:

-parallelisation (scheduling) of the photoionisation computations

-porting to Python3 to benefit of public-available libraries and compatibility with similar codes

-replacement of Monte-Carlo modellisation with exact analytic profiles

Main Results

- Parallelisation:

The code is now running with unified data structure, simpler configuration files and is called through *HTCondor/slurm* schedulers.

This allows to have unique configuration file for all the runs and simply scale the number of folders required for each run.

Scheduling allows a fast, traceable and clean simulation set, which can be also extended and run jointly on different clusters working on the same storage

- Porting:

The main code has been passed from *bash* to *python3*, enabling a smooth integration with the existing subroutines (already in Python) and benefitting from public, community-developed libraries, such as Astropy for the *fits* file format

- Analytic modelling:

Previous line profiles were computed through Monte-Carlo simulation of the emitting region: slow and needed to accumulate huge number of datapoints (10^5) for each geometric configuration to get sufficient statistic. Around **30 hours** to span the geometry parameter space (just for one given ionisation and outflow velocity).

Replaced with exact analytic expression, taking around 5 minutes – a factor 360 less!

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

Final Steps

The code update is mostly done. Final actions are to:

- -Test and debug the new version
- Document the changes
- -Compute new sets of simulations, to be used as table-models to fit observed UV and X-ray spectra
- -Make computed tables publicly available on the code website: <u>https://baltig.infn.it/ionisation/wine</u>

WINE - Wind in the Ionised Nuclear Environment				List of available WINE table models
If main v wine / + v History Find file Edit v			Project information	At the following links you can find the WINE table models presented in Luminari et. (2024), with different Spectral Energy Distributions (SEDs) and volume filling factors C_v .
Update file WINE_description.md		· 103 Commits	Narrow-Line Seyfert 1 SED	
Afredo Luminari authored 8 days ago			% 1 Branch ⊘ 0 Tags	Tables built with the typical SED of a Narrow-Line Sy1:
Name	Last commit	Last update	11 KiB Project Storage	Absorption component
				\Box Emission component for volume filling factor $C_v=0$
🗅 documents	Update file WINE_description.md	6 days ago	README	\Box Emission component for volume filling factor $C_v=1$
🗅 figures	Update 2 files	1 year ago	CI/CD configuration	The parameter space is as follows:
🗅 models	Update file WINE_table_models.md	5 months ago	+ Add LICENSE	\square Ionisation parameter $log(\xi/erg\ cm\ s^{-1})\in[3.0,6.0]$, steps of 0.25
eitten ei vert	Configure CACT in ' sittab ai umi' areat	1.0000.000	+ Add CHANGELOG	\Box Outflow velocity $v_{out} \in [0.0, 0.4]c$, steps of $0.025~c$
- griab*ci.ymi	comgure sast in .gittab-ci.yint, creat	i year ago	+ Add CONTRIBUTING	\square Column density $N_H \in [0,2\cdot 10^{24}]cm^{-2}$, steps of $2\cdot 10^{23}cm^{-2}$
M README.md	Update 2 files	6 days ago	+ Add Kubernetes cluster	\Box Opening angle of the cone $ heta_{out} \in [0,90] deg$, steps of $10 deg$
				\Box Line-of-sight inclination $inc \in [0,90] deg$, steps of $30 deg$
README.md			+ Configure Integrations	The intrinsic turbulent velocity is 3000 km/s (corresponding to 1 σ).
				A further table for absorption, with parameter space as above but with $log(\xi/erg\ cm\ s^{-1})\in[3.0,5.5]$, steps of 0.5 and turbulent velocity of 15000 km/s can be found here
WINE - Wind in the Ionised Nuclear Environment			December 04, 2023	Powerlaw SED
Welcome				
				Tables with Power-law SED with photon index $\Gamma=1.8$:
This is the website of the V	Vind in the Ionised Nuclear Environment (WINE) code. Here you will find	the documentation and the		
table models to get started	I with WINE and use it within popular spectral fitting models, such as xs	pec.		□ Absorption component
WINE is a spectroscopic model for disc winds in Active Galactic Nuclei and compact sources. Current energy resolution of the				Emission component for volume nung factor $v_{\psi} = 0$

Missione 4 • Istruzione e Ricerca