

Finanziato dall'Unione europea NextGenerationEU

RAMSES GPU

Presented by: Raffaele Pascale

Collaborators: Francesco Calura, Claudio Gheller, Emanuele De Rubeis, Donatella Romano, Valentina Cesare

Spoke 3 II Technical Workshop, Bologna Dec 17 -19, 2024

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca

An effective strategy involves porting hydrodynamical codes onto **GPU architecture (RAMSES)**

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing **Intermana Missione 4 • Istruzione e Ricerca**

Application to RAMSES and MINIRAMSES

Ramses and **Miniramses** are written in Fortran programming language.

Eulerian approach for solving compressible hydrodynamics equations

Partially compatible with graphics processing units (GPUs)

Implements adaptive mesh refinement **(AMR)** for resolving structures on different scales

MINIRAMSES is an optimized version of Ramses featuring an enhanced grid memory management system, which facilitates memory access and substantially (?) increases the potential for efficient GPU integration of the code.

Italiadomani

Ministero
dell'Università
e della Ricerca

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing **Intermana Missione 4 • Istruzione e Ricerca**

22.5 kpc

AMR

Italiadomani

ZICSC

(Adaptive Mesh Refinement)

Identification of Oct Cell:

- It identifies an individual cell within
- the oct in the computational domain.

Refinement Evaluation:

- It assesses if the oct cell meets the criteria for refinement.
- Criteria may include gas density, density gradient, or other physical properties.

Cell Refinement:

- If the oct cell meets refinement criteria, it is divided into smaller cells.
- The process increases grid resolution in the region of interest.

RAMSES

Example of classical AMR working

During cells refinement, new born cells belonging to the same oct are saved in non-contiguous parts of the memory.

MINIRAMSES

Introduces the new macrostructure: of super-oct in cell refinement.

ocs in super-octs are saved in contiguous memory locations. Cell adjacent in space close in memory

 22.5 kpc

Missione 4 • Istruzione e Ricerca

AMR

Italiadomani

(Adaptive Mesh Refinement)

Identification of Oct Cell:

- It identifies an individual cell within
- the oct in the computational domain.

Refinement Evaluation:

- It assesses if the oct cell meets the criteria for refinement.
- Criteria may include gas density, density gradient, or other physical properties.

Cell Refinement:

- If the oct cell meets refinement criteria, it is divided into smaller cells.
- The process increases grid resolution in the region of interest.

Super-oct

ZICSC.

The **superoct** is a **large cube** composed of smaller sub-cubes, known as octs. Its **hierarchical structure** functions similarly to grid refinement, with each successive level increasing the number of octs along each edge by a factor of 2. As a result, the edge length of the superoct at a given level contains double the number of octs compared to the previous level.

Superoct level (**n**) from 0 to 5. In 3d, number of octs per superoct is 8^n

 $n = 4$ ---> octs per superoct = 4096 **n = 5** ---> octs per superoct = 32768 The larger n, the better the changes for an optimal porting

 22.5 kpc

Basic functioning of (MINI)RAMSES

Italiadomani

Adaptive Mesh Refinement (AMR):

the grid resolution is dynamically adapted to match the simulation's needs. Regions of interest are refined for higher resolution

Load Balancing:

RAMSES optimizes computational resources by distributing the workload evenly across processing units.

Gravity:

Gravity field is computed based on the matter distribution.

Hydro:

The hydrodynamic equations describing the fluid motion are solved

N-body:

the trajectories of collisionless particles (e.g., dark matter) are evolved using the leapfrog algorithm.

Cooling:

Cooling processes to account for energy loss

More physics:

Additional physics as wids, star formation etc.

Adaptive Mesh Refinement (AMR):

the grid resolution is dynamically adapted to match the simulation's needs. Regions of interest are refined for higher resolution

Load Balancing:

RAMSES optimizes computational resources by distributing the workload evenly across processing units.

Gravity:

Gravity field is computed based on the matter distribution.

Hydro:

The hydrodynamic equations describing the fluid motion are solved

N-body:

the trajectories of collisionless particles (e.g., dark matter) are evolved using the leapfrog algorithm.

Cooling:

Cooling processes to account for energy loss

More physics:

Additional physics as wids, star formation etc.

Timescale and milestones

M6 - Preliminary analysis: Investigation of MINIRAMSES to identify sections suitable for GPU parallelization

M8 - GPU porting of Hydro modules: Identification of modules to port on GPU, evaluation of time performances. Gradual GPU porting of individual modules used in hydrodynamics.

M7 - Getting GPU resources: Submission o proposal @Cineca **M10 - Memory management of hydro modules:** Identification of strategy for memory management. Optimization of the code on GPU to maximize performance

M9 - Tests

Tests and performance evaluations before and after. Evaluation of initial performance and identification of any issues or bugs.

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing **Inter and Missione 4 • Istruzione e Ricerca**

 $22.5~{\rm kpc}$

Accomplished work: porting of the hydro solver

Hydrodynamic solver

The **Godunov** solver is a numerical technique for solving hyperbolic PDEs describing fluid flow.

Domain Discretization: The spatial domain undergoes discretization into cells, constituting a 3D grid.

Flux Calculation Across Cell Boundaries: For each cell, the Godunov method computes fluxes across its borders, considering fluid properties and boundary conditions.

State Variable Update: State variables of the fluid get updated based on computed fluxes, adhering to flow conservation equations.

Temporal Iteration: The entire process iterates over each time step until reaching a defined stopping criterion.

 $22.5~{\rm kpc}$

Accomplished work: porting of the hydro solver

Hydrodynamic solver

The **Godunov** solver is a numerical $\int_{\mathbf{v} \text{ gener}}^{\mathbf{v} - \text{libc}_s}$ solving hyperbolic PDEs describing fluid $\int_{\text{MA}}^{\text{mean}}$

Domain Discretization: The spatial dom discretization into cells, constituting a 3D

Flux Calculation Across Cell Boundaries the Godunov method computes fluxe borders, considering fluid properties conditions.

State Variable Update: State variables of updated based on computed fluxes, adl conservation equations.

Temporal Iteration: The entire process iterates over each time step until reaching a defined stopping criterion.

 $22.5~{\rm kpc}$

63% of the time is spent by the hydrodynamical solver (godfine1)

run over 1 CPU

Accomplished work: porting of the hydro solver

 $0.0%$

 $0.0%$

 $0.0%$

1,396 s

 $1,074s$

603,318 ms

12288

36864

12288

113,644 µs

29,131 µs

49,098 µs

72,332 µs

 $24,435 \,\mu s$

 $37,341 \,\mu s$

6.C

Ministero
| dell'Università
| e della Ricerca

About time

Italiadomani

superoct level **superoct level 4**

 \blacktriangle

full GPU full CPU intermediate

intermediate

Full GPU

godunov_fine unlock all octs

cmpflxm

save flux Y

full CPU

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing **Intermana Missione 4 • Istruzione e Ricerca**

44.0 NPC

60,166 µs

 $21,840 \,\mu s$

34,819 µs

34,240 ms

36,200 ms

33,996 ms

816,981 µs PushPop

PushPop

PushPop

295,540 µs

563,886 µs

 $0.0%$

 $1,239s$

Ministero
dell'Università
e della Ricerca

12288 100,790 us 73,305 us 62,615 us 36,000 ms 702,611 us PushPop godunov_fine unlock all octs

Improvements?

Each call to the godfine1 subroutine results in a speedup of approximately **1.5 times (low).**

The primary reason for the limited gain is the **overhead associated with memory management and communication** between the CPU and GPU.

These tasks consume a significant portion of the processing time, offsetting the potential performance improvements.

(SS)

集

superoct level **superoct level 5**ហ

full GPU full CPU

tull GPU

Full CPU

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing Missione 4 • Istruzione e Ricerca

Porting of the hydro solver: problems

Superoct level 4: no significant speed-up

Superoct level 5: significant speed-up in the 1CPU vs 1GPU scenario. Sub-optimal in more realisti scenarios.

After evaluation and close collaboration with the support @ Cineca and @NVIDIA, we concluded that **offloading the Nbody component and part of the hydro modules to the GPU is currently not feasible**.

The Nbody and part the hydro modules rely on a c_f_pointer function, a Fortran intrinsic procedure used for interoperability with C/C++ code. This function facilitates the exchange of data between Fortran and other languages by providing a Fortran pointer from a C pointer or vice versa. However, this functionality is not available for GPU offloading

Hydro:

The hydrodynamic equations describing the fluid motion are solved

N-body:

the trajectories of collisionless particles (e.g., dark matter) are evolved using the leapfrog algorithm.

Completing the GPU porting of these components would require a complete rewrite of the memory management routines in MiniRAMSES, making the code significantly different from the public version and essentially turning it into a separate codebase from the original project.

Next steps:

Change of code and topic: To develop and implement new routines in **RAMSES-RT** for handling **radiative feedback** from individual massive stars, while enhancing computational efficiency through **GPU porting** of critical components.

RAMSES-RT: A radiation-hydrodynamics extension of the **RAMSES** code.

It solves the coupled system of **gas dynamics, gravity, and radiative transfer** on an adaptive mesh refinement (AMR) grid.

Radiative transfer is implemented using the moment method with **M1 closure**.

Used to model processes like **reionization**, **star formation**, and **stellar feedback** in astrophysical systems.

 ZZ . σ KDC

New Radiative Feedback Routine

- **Individual star tracking**: Implement feedback from single massive stars instead of bulk populations.
- **Accurate photoionization**: Direct coupling between stellar radiation and surrounding gas.
- **Time-dependent flux: Account for** star luminosity evolution in time.

Porting to GPU

- Offloading key routines from CPU to **GPU** to achieve higher parallelization.
- Reducing computational bottlenecks in **radiative transfer and flux updates**.
- Achieving significant speedup for **large-scale simulations**.

Conclusions and Next steps

Ministero
dell'Università
e della Ricerca

Italiadomani

Impossible to complete the porting of Nbody component and Hydrodynamic solver as long as the NVIDIA compiler is updated.

We were able to port on GPU the majority of the subroutines associated with hydrodynamical component.

The code has a significant speed up in case of superoct level 5, but not superoct level 4

Initial attempts to employ OpenACC for GPU memory management have not yielded the desired results.

Improving memory movement could result in significant speed-ups, particularly in scenarios where superoct level 4.

Enhance and optimize **RAMSES-RT** by developing advanced routines to accurately model radiative feedback from individual massive stars. This includes implementing a more precise feedback mechanism and porting key computational components to a **GPU architecture** for significantly improved performance and scalability.

ZZ . \mathcal{F} KpC