

Finanziato dall'Unione europea NextGenerationEU

PINOCCHIO Code: Latest Developments and GPU Transition Marius D. Lepinzan, P. Monaco, T. Castro and L. Tornatore

Spoke 3 II Technical Workshop, Bologna Dec 17 - 19, 2024

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Scientific Rationale

PINOCCHIO is a code, based on Lagrangian Perturbation Theory (LPT), for simulating Dark Matter halos in cosmological boxes and past light cones (Monaco et al. 2002, 2013; Munari et al. 2017)

Comparison with full N-body simulations:

- ~1000 faster
- 5 10% accuracy in reproducing 2-point halo statistics, halo mass function and halo bias
- 5 10% accuracy in reproducing cosmic void statistics (*Lepinzan et al. in prep*)

Technical Objectives, Methodologies and Solutions

- Optimize the code to fully leverage modern HPC infrastructure, including GPUs:
- Improve code performance: suitable threadization? main bottlenecks?
- Identify off-loadable regions: what can be ported to GPUs?
- Improve scientific output: Adopting new algorithm?
- Adopted solutions:
- Improve the MPI framework: OpenMP
- Porting collapse times to GPU: OpenMP
- Optimize and investigate a new fragmentation algorithm: ADP vs HDBSCAN
- Testing, bug fixing, testing, bug fixing... !!

Extending the existing parallel computing paradigm by integrating OpenMP into the collapse times calculation

- Nearly ideal scaling up
- Large Euclid Box (box ~ 4 Gpc, 4096^3 particles) computational time: ~ 8% out of ~ 40 minutes
- Computational time improvement: ~ 4x
 speed-up
- Thousands of mocks: ~ 40 human hours less

Offloading of collapse times calculation on GPU with OpenMP:

- Offloading main issue: need of a custom cubic spline and bilinear spline interpolation
- GPU offloading test out of PINOCCHIO and comparison with GSL: done
- Integration in PINOCCHIO and test of GPU vs CPU final scientific output: minor differences that do not impact the code primary usage

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum

Offloading of collapse times calculation on GPU with OpenMP:

- GPU cubic spline version tested on NVIDIA and AMD platforms: offloading and performance portability achieved (~ 10x speedup)
- Power consumption measurements integrated for both CPUs and GPUs: Power Measurement Toolkit (PMT) only on NVIDIA platform (GPU kernel ~80 % more efficient)
- GPU bilinear spline still to be optimized: main issue memory transfer
- **PDP proceeding** (Lepinzan et al. sub) and technical **paper** (Lepinzan et al. in prep)

New methodology for the fragmentation (halo reconstruction)

- Clustering algorithm (Advance Density Peak) for a domain decomposition: identify Eulerian patches that will end up in halos according to PINOCCHIO
- Apply the current algorithm for fragmentation on every independent domain

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum

Missione 4 • Istruzione e Ricerca

_

New methodology for the fragmentation (halo reconstruction)

 Bypass the Eulerian space and apply the clustering algorithm directly to a regular 3D grid of points, using the collapse time for each particle provided by PINOCCHIO

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum

New methodology for the **fragmentation** (halo reconstruction)

2D version of ADP already
 implemented and tested for source
 Debleding on a simulated image of
 True Universe (TU) against official
 Euclid algorithm

New methodology for the fragmentation (halo reconstruction)

- Extension to a 3D version of ADP implemented
- Only collapse times information (FMAX)
- Comparison with other clustering algorithm: HDBSCAN

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum

Timescale, Milestones and KPIs

04/2023	3 09/2023			02/2024		C	06/2024		10/2024		08/2025
	MS 6			MS 7	MS 8		MS 9			MS 10	
	1, 2,		Threadization of collapse time with OpenMP GPU offloading of collapse times with OpenMP: delayed because of GSL incompatibility			1. 0 	Collapse times Aulti-GPU vers and AMD platfo Aachine learni IDBSCAN on g Stable 5.1 vers	times GPU: Multi-MPI, O version tested on NVIDIA O platforms learning approach: ADP vs N on going 1 version: ready without MG			
1. 2. 3.	Fam code Bug Iden regi	iliarization w e fixing ntification off ons and bottl	vith the -loadable leneck	 GPU offloadin done Machine lear ongoing New stable re neutrinos and 	GPU offloading of collapse times with Ope done Machine learning approach for fragmenta ongoing New stable release of the code (v5.1): nor neutrinos and modified gravity (MG) test o			1P: n: I, ie	 New fragmentation FFTs on GPUs 100 simulations up 1000³ particles Technical paper on the code 		

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum

Final Steps

- Add velocities information to the 3D grid-based version of ADP
- Test the **3D** grid-based version of **HDBSCAN** with velocities information
- Optimize of the GPU version of tabulated collapse (custom bilinear spline) times calculation by adopting a full GPU interpolation procedure
- New code documentation
- Euclid-like simulations with the GPU version of collapse times calculation and new fragmentation