

Finanziato dall'Unione europea NextGenerationEU

EuMocks: Mocking the Universe for Euclid++ *Pierluigi Monaco, UniTS (*+*INAF, INFN, IFPU, ICSC), M. Lepinzan, T. Castro, L. Tornatore, G. Taffoni, C. Carbone*

Spoke 3 Technical Workshop, Bologna December 17/19 2024

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Scientific Rationale

Euclid will survey the universe down to redshift z~2, **mapping the large-scale structure** to measure its geometry and growth rate to shed light on dark sector

A spectroscopic sample will be based on **slitless spectroscopy** of ~14,000 sq deg of the sky, detecting the Halpha line at 0.9<z<1.8

Control of **systematic errors** will be the issue to tackle to provide convincing and potentially groundbreaking results.

To this aim we need **thousands of simulations** of the Universe observable by Euclid...

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

We aim at producing **3500 simulations of a volume of ~4Gpc with ~10¹² particles, resolving halos of ~10¹¹ M_{sun}/h**, with output on a past-light-cone covering **half of the sky** and starting at **z=3**.

Standard N-body codes are too slow to produce such a massive set of simulations Approximate methods: **PINOCCHIO**

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

We already produced **1000 simulations of a volume of ~3Gpc with ~2e10**¹¹ **particles, resolving halos of ~10**¹¹ **M**_{sun}/**h**, with output on a past-light-cone covering **half of the sky** and starting at **z=4**.

These are supported by a larger set of simulations based on smaller boxes or on boxes with lower mass resolution.

Name	$L_{\rm s}$	$N_{\rm part}$	$N_{\rm real}$	min. M_h	$V_{ m s}$	tot. $V_{\rm s}$	θ	area	Zstart	$V_{ m s}$	tot. $V_{\rm lc}$
Geppetto	1.2	2160^{3}	3500	1.52e+11	1.73	6047	30°	2763	2.0	12.72	44520
EuclidLargeMocks	3.38	6144^{3}	1000	1.48e+11	38.61	38614	70°	13571	4.0	163.86	163855
Minerva-like	1.5	1000^{3}	10000	2.67e+12	3.38	33750	20 R-1				
NewClusterMocks	3.87	2160^{3}	1000	4.90e+12	57.96	57960	60°	10313	2.5	69.70	69700

We already produced **1000 simulations of a volume of ~3Gpc with ~2e10**¹¹ **particles, resolving halos of ~10**¹¹ **M**_{sun}/h, with output on a past-light-cone covering **half of the sky** and starting at **z=4**.

These are supported by a larger set of simulations based on smaller boxes or on boxes with lower mass resolution.

Name	$L_{\rm s}$	$N_{\rm part}$	$N_{\rm real}$	min. M_h	$V_{ m s}$	tot. $V_{\rm s}$	θ	area	Zstart	$V_{ m s}$	tot. $V_{\rm lc}$
Geppetto	1.2	2160^{3}	3500	1.52e+11	1.73	6047	30°	2763	2.0	12.72	44520
EuclidLargeMocks	3.38	6144^{3}	1000	1.48e+11	38.61	38614	70°	13571	4.0	163.86	163855
Minerva-like	1.5	1000^{3}	10000	2.67e+12	3.38	33750	10	5			
NewClusterMocks	3.87	2160^{3}	1000	4.90e+12	57.96	57960	60°	10313	2.5	69.70	69700

The largest collection of halos on the lightcone ever simulated!

Spoke 3 + Euclid paper in preparation + press release

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Technical Obje

2-point correlation function of **Flagship** galaxy mock catalog (based on N-body) compared to 1000 EuclidLargeMocks calibrated on it

Credit: Gabriele Parimbelli

<u>rsr</u>

What we need in Euclid

Correlation matrix of power spectrum measurements on an idealized survey geometry (a cone of 60 degree of aperture, 2763 deg²

Credit: Emiliano Sefusatti, Jacopo Salvalaggio

Finanziato dall'Unione europea NextGenerationEU

The definitive test

- + take the Flagship mock as data vector
 + use EuclidLargeMocks for covariance
 + fit the data with a model
 + obtain posteriors for parameters
 + check consistency of cosmological
- + check consistency of cosmological parameters

Then:

+ take one of the EuclidLargeMocks
+ use it as a data vector
+ repeat the fit
+ check consistency of posteriors

Credit: Yousry Elkhashab

We aim at producing **3500 simulations of a volume of ~4Gpc with ~10¹² particles, resolving halos of ~10¹¹ M_{sun}/h**, with output on a past-light-cone covering **half of the sky** and starting at **z=3**.

Standard N-body codes are too slow to produce such a massive set of simulations Approximate methods: **PINOCCHIO**

Development is needed (Spoke3 + Spoke1, PRIN PNRR 2022): **SCIENCE**:

- improve and optimize the **reconstruction of halos**, especially in filaments
- implement a Particle-Mesh code to move halos (instead of 3LPT)
- add **lensing** and relativistic effect **CODING**:
- port on **GPUs**
- improve the **fragmentation (deblending, clustering)** algorithm

We aim at producing **3500 simulations of a volume of ~4Gpc with ~10¹² particles, resolving halos of ~10¹¹ M_{sun}/h**, with output on a past-light-cone covering **half of the sky** and starting at **z=3**.

Standard N-body codes are too slow to produce such a massive set of simulations Approximate methods: **PINOCCHIO**

Development is needed (Spoke3 + Spoke1, PRIN PNRR 2022): **SCIENCE**:

- improve and optimize the **reconstruction of halos**, especially in filaments
- implement a **Particle-Mesh** code to move halos (instead of 3LPT)
- add **lensing** and relativistic effect **CODING**:
- port on **GPUs**
 - + collapse times
 - + FFTs (+De Rubeis, Lacopo, Gheller)
- improve the fragmentation (deblending, clustering) algorithm

-> 20% -> to be started -> 80%

-> 100% -> 80% -> 20%

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

We aim at producing **3500 simulations of a volume of ~4Gpc with ~10¹² particles, resolving halos of ~10¹¹ M_{sun}/h**, with output on a past-light-cone covering **half of the sky** and starting at **z=3**.

Standard N-body codes are too slow to produce such a massive set of simulations Approximate methods: **PINOCCHIO**

Development is needed (Spoke3 + Spoke1, PRIN PNRR 2022): **SCIENCE**:

- improve and optimize the **reconstruction of halos**, especially in filaments
- implement a **Particle-Mesh** code to move halos (instead of 3LPT)
- add **lensing** and relativistic effect **CODING**:
- port on **GPUs**
 - + collapse times
 - + FFTs (+De Rubeis, Lacopo, Gheller)
- improve the **fragmentation (deblending, clustering)** algorithm

See talk by Marius Lepinzan

Challenges

Massively parallel code, every step must be optimized before burning so much computing time

Computing time: ~30,000,000 core hours Memory: ~128 TB Storage: >~1PB

Petabyte-scale output to be offered to the community -> National / Interoperable Data Lake

example: Cosmohub.pic.es

Timescale, Milestones... and KPIs (2023)

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Timescale, Milestones... and KPIs (2024)

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Next Steps and Expected Results

Code development:

- -> improved halo definition, by May 2025 (M. Lepinzan)
- -> PM code, by December 2025 (P. Monaco, M. Lepinzan)
- -> lensing, by August 2025 (Y. Elkhashab, PRIN-PNRR)
- -> collapse times to GPUs, completed (M. Lepinzan)
- -> FFTs to GPUs, by May 2025 (D. Goz, G. Lacopo)
- -> halo construction to GPUs, by August 2025 (M. Lepinzan)

Simulation production:

-> demonstrator set, by August 2025 (M. Lepinzan, P. Monaco)

Simulations in the datalake:

- -> available simulations, by May 2025 (...) (with WP5 and WP4)
- -> new simulations, as soon as they are produced (...)

(...) means: it depends on resource availability!