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ABSTRACT

Recent associations of high-energy neutrinos with AGN have rekindled interest in leptohadronic models of radiation
from astrophysical sources. The rapid growth in multi-messenger data acquisition highlights an emerging need for fast
numerical models capable of application to large source samples. In this contribution, we introduce LeHaMoC, an open-
source, versatile leptohadronic code. LeHaMoC is specifically designed for modeling time-variable, non-thermal emission

LeHaMoC is an open-source code written in Python [8].
Its performance is compared against that of other similar
codes in [2]. It solves the Fokker-Planck equations of pho-
tons, electrons, positrons, protons, and neutrinos produced in
a homogeneous magnetized source that may also be ex-
panding. The code utilizes the Chang & Cooper method
[3], a fully implicit difference scheme that allows fast com-
putation of steady-state and dynamically evolving physi-
cal problems.

from compact astrophysical sources, including blazar jets, AGN coronae, and gamma-ray bursts (GRBs). We showcase
recent applications, such as blazar SED fitting using Bayesian inference techniques, modeling X-ray and v-ray variability
in blazars, and exploring high-energy neutrino associations. Additionally, we discuss its role in training deep neural
networks - an essential step toward achieving more efficient computations and exploring larger parameter spaces.

BLAZAR JET EMISSION

* Bayesian fitting of stationary blazar SEDs. Leptonic
MCMC fitting (emcee) is feasible using reasonable 0
computational resources, such as a high-performance
desktop or workstation equipped with 32-64 CPU cores.
Measurements and upper limits are included in the like-
lihood function calculation. An example is shown in Fig. 2.
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code computes secondary emission from hadronic cas-
cades and its feedback on all relevant particle populations.
Fig. 1 illustrates the decomposition of a leptohadronic SED

Figure 1: Lepto-hadronic model for an extreme X-ray flare of
Mrk 501 (dashed black line). Colored lines show the hadronic cas-
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Figure 2: SED of extreme blazar 3HSP J095507.9+355101, which nosity is o< L, (t), as expected in the External Compton scenario
was tentatively associated with a neutrino alert (data from [5]). (Stathopoulos et al., in prep).

100 SSC spectra from the posterior distributions of the MCMC fit

are overplotted (orange lines). The SSC model from Petropoulou

et al. [7] is also shown for comparison [8].

What we offer:

e LeHaMoC: A simple and friedly to use open-source,
versatile leptohadronic code.

* github repositories with examples on modeling and
SED fitting usning MCMC [8] and NN [9].

* Interested in GRBs, time dependent problems etc? We
are too, and LeHaMoC can do that as well.

GRB EMISSION
* Time-dependent modeling of GRB emission. The code is applicable to both the rapidly varying GRB prompt
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emission and the smoothly decaying afterglow, as all parameters can evolve with time. It also accounts for adiabatic . s
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Figure 4: Prompt emission modeling of GRB 211211A using vari- 1005 10 100 107 165 10

able electron injection rate. GRB 211211A was detected by Fermi- E [MeV] -

GBM and Swift-BAT [6]. Its long duration (~ 1 min) and its | H F R I

brightness allow for a detailed study of its spectral and tempo- Figure 5: Top: Time-averaged spectrum of GRB 211221A during Hellenic Foundation for

ral evolution (Xyloportas et al., in prep.) Top: (Rescaled) numeri-
cal light curve (solid line) and 1-sec binned Swift-BAT light curve
(markers). Bottom: The injection profile used in LeHaMoC (his-
togram) and the bolometric photon light curve (green line).

the 0-2 sec interval computed with LeHaMoC (solid line). Data are
from Ref. [6]. Bottom: Afterglow SED of GRB 221009A for the
time interval 1000 - 1350 s (post trigger). The SED is modelled
with SSC and fitted using MCMC. Adopted from Ref. [1].
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