Thermonuclear Supernovae in the Ultraviolet

Peter Brown Texas A&M University

 How Swift swiftly opened up a new field Standard Candle SNe la are not standard in the UV – possibly key to making them better Optical weirdos are weirder in the UV Early time observations may solve the long-standing progenitor problem

Peter Brown Texas A&M University

M101 – UVOT first light

M101 and SN2011fe

M101 and SN2011fe and SN2023ixf

Also twenty years ago.

Twenty years ago . . . and now

IUE prototyping — UV-blue = II

Figure 2: Two colors, m_{275} -B vs. B-V, diagram for SNe near maximum. The line gives the colors of the black body at different temperatures whereas the arrow on the top-left of the figure indicates the reddening line.

> Cappelaro, Turatto, & Fernley 1995 IUE ULDA Access Guide #6

HST Spectroscopy 1 of each type

Phototyping for identifying higher redshift SNe Ia for cosmology in Riess+ 2004:

If you see rest-frame UV, it is not a la

Pre-Swift Ultraviolet Supernovae

Adding Swift scales for comparison

Adding Swift scales for comparison

Ultraviolet Supernovae

Ultraviolet Supernovae

"Pick the best 1 or 2 Supernovae each year"

Supernova Taxonomy 2003

Turatto 2003

Turatto, Cappellaro, & Pastorello 2007 + Gal-Yam 2012

Hundreds of light curves

Lots of work and science to do

Swift Optical/Ultraviolet Supernova Archive

NASA Astrophysics and Data Analysis Program – funded project to create a database of the UV images and photometry for the 300+ Swift SNe 800 1400

Brown et al. 2014a kicked off at 2013 NUVA meeting in Garching

SNe Ia are faint in the UV due to metal line blanketing

Theoretical models predict the UV is sensitive to composition differences

Would change with redshift !!!

Theoretical models predict the UV is sensitive to asymmetry

Would NOT change with redshift !

The Promise of UV

The UV is sensitive to:

Metallicity

Density structure

Dust reddening

Dust scattering

Interaction

The Promise

The UV is sensitive to:

Metallicity

Density structure

Dust reddening

Dust scattering

Interaction

The Peril

The UV is sensitive to:

Metallicity

Density structure

Dust reddening

Dust scattering

Interaction

And you have to go into space!

Swift UVOT filters Swift UVOT light curves

UV color evolution

- Milne et al. 2013 noted a difference in the near-UV – optical color evolution,
- with groups dubbed NUV-red and NUV-blue

HST Ultraviolet Spectroscopy

Growing sample of HST UV spectroscopy

Foley et al. 2016: Ultraviolet Diversity of Type Ia SNe

UV color evolution

- Milne et al. 2013 noted a difference in the near-UV – optical color evolution,
- with groups dubbed NUV-red and NUV-blue

Ultraviolet Diversity of Type Ia Supernovae

Swift SN Ia colors at maximum light colored by B-V color.

Circled SNe have HST UV spectroscopy

Black line is UV variation model from Foley et al. 2016

Ultraviolet Diversity of Type Ia Supernovae

Swift SN Ia colors at maximum light colored by B-V color.

Circled SNe have HST UV spectroscopy

Black line is UV variation model from Foley et al. 2016

NUV "twins" SNe 2011fe and 2011by have different MUV continua (Foley & Kirshner 2013) attributed to metallicity difference based on Lentz et al. (2000) models

UV differences between SN2017erp and SN2011fe

Comparisons with Walker et al. (2012) models point to metallicity as source of near-UV differences

SALT2 color law resembles intrinsic differences in the UV

Early Swift observations enabled HST UV spectroscopy of a red SN Ia

SN2021fxy also has suppressed UV emission

Change in luminosity better match than metallicity

ASASSN-14lp: UV Suppression from high metallicity, high 56Ni fraction, or truncated UV flux at photosphere

Broadband filters can cross over large spectral changes

K Corrections are larger and more varied In the ultraviolet filters

A Template Spectral Library is used to find and/or create spectra which match the observed photometry (Devarakonda 2023)

Template models are reddened by different amounts to cover the color-color space of the photometry. The best matches to the observed photometry are used.

These observer-frame models can be used to compute the appropriate correction for MW

Deredshifting these models can be used to compute the appropriate correction for k corrections

The dredshifted models can be used to compute the appropriate correction for host reddening

Here we have assumed intrinsic B-V colors based on light curve shape from Phillips et al. (1999)

Combined Corrections

Devarakonda (2023)

Final "intrinsic" colors

Properly corrected colors can be better correlated with SN and host properties to explain the UV diversity independent from spectroscopy

Final "intrinsic" colors

https://www.pexels.com/photo/african-elephant-in-savannah-16049579/
UV dispersion much larger – Stay tuned for the application to a larger sample

SuperC SNe la

Hotter, more ionized explosion Excess flux from H-poor interaction?

Brown et al. 2015 arXiv:1505.01368v1 The "standard" candles are already much more diverse in the UV.

Extreme subclasses are even more extreme in the UV.

Combining the photometric samples of Swift/UVOT with HST spectroscopy is a powerful synergy

-20 -14 -8 -2 4 10 16 22 28 34 40

UV Spectra of SN2016ccj show UV absorption features

UV Spectra of SN2016ccj reject BB addition to flux

Supernova Ia subclasses with early bumps have consistently bluer UV colors – SuperC and 02es-like

Hoogendam et al. 2024

Check out his e-poster and talk to him at a break

Thermonuclear lax

Hotter, more ionized explosion Excess flux from H-poor interaction?

Brown et al. 2015 arXiv:1505.01368v1

What are the progenitor systems of Type Ia Supernovae?

Red giant Main sequence Second White Dwarf Single Degenerate (only 1 white dwarf)

SEEING THE COLLISION OF A SUPERNOVA WITH ITS COMPANION STAR Kasen 2010

None of the Swift supernovae showed* signs of shock in the ultraviolet

SN2011fe – no signs of UV shock

before explosion

two days after explosion

Brown et al. 2012b

Early UV observations constrain the viewing angle and separation/size of progenitor

Phase Space is best constrained with earlier, shorter wavelength observations

Region to the right of curve is excluded

Brown et al. 2012

A few UV-bright and/or early peaks?

uvw1 max

uvw1 mag

Early blue optical excess seen in SN2017cbv a shock signature?

[↓] Hosseinzadeh et al. 2017 But see also Hosseinzadeh et al. 2017

But no shock seen in the space-UV

Hosseinzadeh et al. 2017

Early UV flash in iPTF14atg and SN2019yvq

Miller et al. 2020

Burke et al. 2021

Miller et al. 2020

Burke et al. 2021

What is the origin of the UV excesses?

What is the origin of the blue excesses which are faint in the UV?

Are there multiple progenitor channels?

Are there other effects going on?

Early UV observations are the best constraints on companion interaction and Ni distribution

^ SN2021aefx Hosseinzadeh+2022SN2023bee Wang et al. 2024 ->

Early UV observations of Type Ia SNe are the current frontier to understanding the progenitors and explosion mechanisms – if the theorists catch up

Ultrasat will make a definitive statement on the rate and magnitude of early excesses

Swift swiftly opened up a new field Standard Candle SNe la are not standard in the UV – possibly key to making them better Optical weirdos are weirder in the UV Early time observations may solve the long-standing progenitor problem

Swift has a legacy of observations with current strategies to continue advancing the field.