Probing Massive Black Hole Demographics with Tidal Disruption Events

Yuhan Yao (UC Berkeley)

Swift20, 2025 March 27

Artist's representation Credit: NASA / CXC / M. Weiss.

Massive black holes in our Universe Ubiquitous in big galaxy nuclei

X-ray: NASA/CXC/SAO; visual: NASA/STScl; radio: NSF/NRAO/VLA

ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray)

- Three popular scenarios for forming MBH seeds
- Provide the minimum mass for seed mechanism
- Number density can constrain mechanism

- Three popular scenarios for forming MBH seeds
- Provide the minimum mass for seed mechanism
- Number density can constrain mechanism

- Three popular scenarios for forming MBH seeds
- Provide the minimum mass for seed mechanism
- Number density can constrain mechanism

- Three popular scenarios for forming MBH seeds
- Provide the minimum mass for seed mechanism
- Number density can constrain mechanism

How to probe MBHs with light?

Quiescent black holes 90-95%

AGN 5–10%

Spatially resolved dynamics (~100 galaxies)

$$r_{\rm infl} \equiv \frac{GM_{\rm BH}}{\sigma^2}$$

Empirical relations (e.g., width of broad emission lines and AGN luminosity)

Tidal disruption event (TDE)

Animation/DESY

Star disintegrates

Accretion disc forms

3

4

Tidal disruption event (TDE)

$r_{\rm T} \sim 7 \times 10^{12} (M_{\rm BH}/10^6 M_{\odot})^{1/3} \,{\rm cm}$ $r_{\rm T} > r_{\rm S} \rightarrow M_{\rm BH} < 10^8 M_{\odot}$

A surge in TDE discoveries

Bade+1996; Komossa+1999; Grupe+1999; Saxton+2020; Sazonov+2021; Gezari+2006, 2012; Chornock+2014; van Velzen+2011, 2021, Arcavi+2014; Holoien+2014; Hung+2017; Hammerstein+2023, Yao+2023, Masterson+2024, ...

A surge in TDE discoveries

Bade+1996; Komossa+1999; Grupe+1999; Saxton+2020; Sazonov+2021; Gezari+2006, 2012; Chornock+2014; van Velzen+2011, 2021, Arcavi+2014; Holoien+2014; Hung+2017; Hammerstein+2023, Yao+2023, Masterson+2024, ...

A surge in TDE discoveries

>200 TDEs now

Bade+1996; Komossa+1999; Grupe+1999; Saxton+2020; Sazonov+2021; Gezari+2006, 2012; Chornock+2014; van Velzen+2011, 2021, Arcavi+2014; Holoien+2014; Hung+2017; Hammerstein+2023, Yao+2023, Masterson+2024, ...

TDE UV/optical properties: hot ~all the time

TDE Search Part I: MBHs in Galaxy Centers

TDE Search Part II: Off-nuclear (Wandering) MBHs

TDE Search Part I: MBHs in Galaxy Centers

TDE identification: Zwicky Transient Facility (ZTF) + Swift

Yao+2022

Yao+2024

TDE possibility vs. M_{BH}

Х

Event horizon suppression factor vs. M_{BH}

Rate of stars being scattered into the loss cone with $J < J_{\rm LC} \equiv \sqrt{GM_{\rm BH}R_{\rm T}}$

Х

TDE possibility vs. M_{BH}

X

also see Lightman & Shapiro (1977), Cohn & Kulsrud (1978), Magorrian & Tremaine (1999), Merritt (2013), Stone & Metzger (2016)

X

Event horizon suppression factor vs. M_{BH}

Fraction of stars creating TDE (instead of being swallowed whole)

Х

 $M_{
m BH}$ / M_{\odot}

How to use TDEs to measure the BHMF?

Event horizon suppression factor vs. M_{BH}

Fraction of stars creating TDE (instead of being swallowed whole)

Huang & Lu (2024)

Depends on BH spin and stellar population age, but close to unity when $M_{\rm BH} < 10^7 M_{\odot}$

The 1/Vmax method:Schmidt 1968

In a flux-limited survey, each detected object is assigned a maximum volume V_{max} within which it could have been observed, given the survey's sensitivity and selection criteria.

The total space density is:

$$\mathscr{R} = \Sigma_i 1 / V_{\max,i}$$

The 1/V_{max} method:

In a flux-limited survey, each detected object is assigned a maximum volume V_{max} within which it could have been observed, given the survey's sensitivity and selection criteria.

The total space density is:

- Get unique **nuclear** transients, require *n_g*>10, *n_r*>10, *t_{dur}>30* days
- Remove known quasars and hosts with strong WISE variability
- Require mean g-r<0.2 mag, post-peak d(g-r)/dt < 0.02 mag/d; rise
 - & fade timescale between 2 and 300 days

$$\mathscr{R} = \Sigma_i 1 / V_{\max,i}$$

The 1/V_{max} method:

In a <u>flux-limited</u> survey, each detected object is assigned a maximum volume V_{max} within which it could have been observed, given the survey's sensitivity and selection criteria.

The total space density is:

 \circ **ZTF-I** (Oct 2018 — Sep 2020): $m_{g,peak} < 18.75$ mag, 16 out of 27 candidates are TDEs \circ **ZTF-II** (Oct 2020 — Sep 2021): $m_{g,peak} < 19.1$ mag, 17 out of 28 candidates are TDEs In total: 33 TDEs (a complete flux-limited sample)

$$\mathscr{R} = \Sigma_i 1 / V_{\max,i}$$

The 1/V_{max} method:

In a <u>flux-limited</u> survey, each detected object is assigned a maximum volume V_{max} within which it could have been observed, given the survey's sensitivity and selection criteria.

The total space density is:

Simulate light curves into survey scheduler, compute recovery fraction.

$$\mathscr{R} = \Sigma_i 1 / V_{\max,i}$$

Event horizon suppression factor vs. M_{BH}

Event horizon suppression factor vs. M_{BH}

TDE Search Part II: Off-nuclear (Wandering) MBHs

t = 5.87 Gyr

Cosmological simulation

Tremmel+2018

t = 6.25 Gyr

At ~kpc scales, dynamical friction (DF) tightens the MBH pair;

×

DF timescales are long in galaxy minor mergers.

Offset MBHs in cosmological simulations

Scales linearly with halo mass

Ricarte+2021a

Offset MBHs in cosmological simulations

Scales linearly with halo mass

Ricarte+2021a

Origin of offset MBHs

Channel 1: From mergers with a DF timescale longer than the age of the Universe

Tremmel+2018, Ricarte+2021a,b

Channel 1: From mergers with a DF timescale longer than the age of the Universe

Hoffman & Loeb 2007, Bonetti+2018, Ryu+2018

Tremmel+2018, Ricarte+2021a,b

Origin of offset MBHs

Channel 2: From 3-body interaction "slingshot kick"

Channel 1: From mergers with a DF timescale longer than the age of the Universe

Hoffman & Loeb 2007, Bonetti+2018, Ryu+2018

Tremmel+2018, Ricarte+2021a,b

Origin of offset MBHs

Channel 2: From 3-body interaction "slingshot kick"

Channel 3: From gravitational wave kick

Volonteri & Madau 2008, Stone & Loeb 2011, Blecha+2016

1st offset TDE: XMM Archival Search

3XMM J2150; 12.5 kpc offset

Lin+2018, 2020

2nd offset TDE: Einstein Probe Discovery

EP240222a; 34.7 kpc offset

Jin+2025

3rd offset TDE: ZTF Discovery

ZTF location of AT2024tvd within its host galaxy (legacy survey image)

AT2024tvd

Yao+2025, submitted arxiv: 2502.17661

3rd offset TDE: ZTF Discovery

Yao+2025, submitted arxiv: 2502.17661

3rd offset TDE: ZTF Discovery

 $10^5 M_{\odot} < M_{\rm BH,offset} < 10^7 M_{\odot}$

HST/WFC3 UV and optical band $\delta t = 117 \text{ d}$

Separation $\Delta x=0.8$ kpc (0.9")

AT2024tvd

Yao+2025, submitted arxiv: 2502.17661

See also radio paper by Sfaradi+2025, in prep

Summary of off-nuclear TDEs

Name	Z	offset (kpc)	Parent galaxy stellar mass (M_{\odot})	Satellite dwarf stellar mass (M⊙)	Central $M_{BH}(M_{\odot})$	ТDE М _{вн} (М⊙)	Orig chan
3XMM J2150	0.055	12.5	10 10.93±0.07	10 7.3±0.4	10 8.16±0.83	~10 ^{4.9}	1
EP240222a	0.033	34.7	10 10.89±0.07	10 7.0±0.3	10 8.09±0.83	~10 ^{4.9}	1
AT2024tvd	0.045	0.81	10 10.93±0.02	N/A	10 8.42±0.36	~10 ⁶	1 or

Yao+2025, submitted arxiv: 2502.17661

Summary of off-nuclear TDEs

Name	Z	offset (kpc)	Parent galaxy stellar mass (M_{\odot})	Satellite dwarf stellar mass (M⊙)	Central $M_{BH}(M_{\odot})$	ТDE М _{вн} (М⊙)	Orig chan
3XMM J2150	0.055	12.5	10 10.93±0.07	10 7.3±0.4	10 8.16±0.83	~104.9	1
EP240222a	0.033	34.7	10 10.89±0.07	10 7.0±0.3	10 8.09±0.83	~104.9	1
AT2024tvd	0.045	0.81	10 10.93±0.02	N/A	10 8.42±0.36	~10 ⁶	1 or

Consistent with expectation: massive galaxies have rich merger history, host more wandering MBHs.

Yao+2025, submitted arxiv: 2502.17661

All in massive galaxies with ~10^{10.9} M_{\odot} — cut-off mass of local galaxy mass function.

New (optical) surveys to explore TDEs

La Silla Schmidt Southern Survey (LS4)

 Observable sky dec<20 deg • Filters: *g*, *i*, *z* • FoV: 20 deg² 18 Limit AB mag ~ 21 • Fills Rubin light curve with high-19cadence data Brightness (mag) 05 **Rubin/LSST** • Filters: *u*, *g*, *r*, *i*, *z*, *y* • FoV: 9.6 deg² • Limit AB mag ~ 24.5 22• Astrometric precision of ~10 mas

Miller+2025 arxiv: 2503.14579

- Little ($M_{BH} \sim \text{few x } 10^5 M_{\odot}$) MBHs are more abundant then bigger ones.
- Three known offset TDEs, all have massive parent galaxies, two from IMBHs.
- LSST and LS4 will uncover the population of nuclear & offset TDEs, illuminate how MBHs formed and grew.
- Contamination rate is high at off-center locations (mostly from interaction powered supernovae), UV (*Swift+UVEX*) is needed to better select TDEs.

TDEs as MBH Probes

yuhanyao@berkeley.edu

