

The selection effects in the LGRB $E_{p,i} - L_{iso}$ correlation

We simulate a large LGRB population with P, z, α , $E_{p,o}$, and L_{iso} to study the impact of peak flux P on the LGRB $E_{p,i} - L_{iso}$ correlation. The mock z and L_{iso} are obtained from the redshift and luminosity distribution models (section 1) in previous work. The mock spectral parameters: $E_{p,o}$ is from the observed bivariate $(E_{p,i}\{z, E_{p,o}\}, L_{iso})$ distribution, and α is from the observed bivariate $(\alpha, E_{p,o})$ distribution. Finally, the mock P can be calculated through the above mock z, α , $E_{p,o}$, and L_{iso} data. These allow the mock data of each parameter to closely follow (section 2) the *Swift* observed distribution. However, to make the simulated P distribution consistent with the observed P distribution, the mock $E_{p,o}$ has to be obtained from the mock $E_{p,i}$ which is simulated based on the observed $(E_{p,i}, L_{iso})$ distribution. This means that the joint $(E_{p,i}, L_{iso})$ distribution is still effective to constrain the LGRB parameters. With this large simulated sample that can well represent Swift results, we find that the $(E_{p,i}, L_{iso})$ distribution, which will directly affect the best-fitting result of the correlation, is significantly dependent on the value of P. Moreover, the P distribution at low- $E_{p,i} \& L_{iso}$ region is different from at higher- $E_{p,i}$ & L_{iso} region, which implies that there may be a subgroup of LGRBs in the low- $E_{p,i}$ & L_{iso} region.

1. The basic formula for z and L_{iso} simulation

$$N_{LGRB} \propto \int_{0}^{z_{max}} \int_{\max(L_{lim}(z), L_{min})}^{L_{max}} \theta(P(L, z)) \varphi(z) \phi(L) dL dz$$

Probabilities of trigger and redshift measurement to **Expected LGRB** Intrinsic Intrinsic **Authors: Guangxuan Lan & Jean-Luc Atteia** Email: glan@irap.omp.eu

How to estimate $\theta(P(L,z))$?

correct the intrinsic distribution (number) to the number that can be detected observational distribution (number)

redshift luminosity distribution distribution

Please see:

MNRAS 508 52–68 (2021) Lan et. al.

2. The simulated distribution vs. the observed distribution

The result of simulated $(E_{p,i}, L_{iso})$ distributions

The simulated data (blue) are well consistent with the observed data (red) in both 1D-parameter and 2D-parameter distributions. The observed sample comes from The Swift/BAT Gamma-Ray Burst Catalog¹ directly, finally including LGRBs with P >259 $0.5 \, ph \, cm^{-2} \, s^{-1} \, (15 - 150 \, keV)$, $15 < E_{p,o} < 9000 \ (keV)$ and measured *z*.

log L_{iso} (erg s⁻)

The colour represents the value of $\log P$. It is clear that data with different *P* have different $(E_{p,i}, L_{iso})$ distributions and best-fitting $E_{p,i} - L_{iso}$ correlations. In addition, the *P* distribution at low- $E_{p,i} \& L_{iso}$ region is significantly different from at higher- $E_{p,i} \& L_{iso}$ region. This is another factor that affects the slopes of different fitting lines. We suppose that sub-class LGRBs maybe exist in the low- $E_{p,i} \& L_{iso}$ region. However, to clarify it, more data with low E_p are required, especially data with E_p lower than Swift's limit.

It can also be seen in this picture that the boundaries for data with $\log P > 1.5$ are different from the entire simulated data. The colour here represents the value of log z. It is clear that the value of z at the boundaries is not simplex, which means the impact of P is not determined by redshift. Our results can also explain best-fitting why the $E_{p,i} - L_{iso}$ correlation will change in different observed samples.

Celebrating 20 years of Swift Discoveries 2025.3.24-2025.3.28 Florence, Italy

1. https://swift.gsfc.nasa.gov/results/batgrbcat/index_tables.html