Celebrating 20 years of Swift Discoveries

Contribution ID: 123 Type: Poster

The physics behind the emission modes in the transitional millisecond pulsar PSR J1023+0038: insights from IXPE, Swift, VLT and VLA

Tuesday 25 March 2025 14:29 (1 minute)

Transitional millisecond pulsars (tMSPs) bridge the evolutionary gap between accreting neutron stars in low-mass X-ray binaries and millisecond radio pulsars, offering a unique laboratory to study the interplay between accretion and pulsar activity. These systems exhibit a distinctive subluminous X-ray state characterized by alternating high, low and flaring emission modes.

Swift/XRT has always had a key role in identifying mode transitions in the prototype tMSP, PSR J1023+0038. Recent multi-wavelength campaigns (including Swift/XRT) on the source have helped establish a solid understanding of how tMSPs operate and are powered.

More recently, using polarimetric data from the Imaging X-ray Polarimetry Explorer (IXPE), the Very Large Telescope (VLT), and the Karl G. Jansky Very Large Array (VLA), together with mode-monitoring observations from Swift/XRT, we conducted the first multiwavelength polarimetric analysis of PSR J1023+0038.

A linear polarization of (12 ± 3)% in the 2–6 keV band was observed during the high mode. The polarization angle aligns with the optical polarization observed by the VLT, suggesting a shared physical mechanism. During the low mode, the significance was insufficient for detailed analysis, resulting in an upper limit of 26% (90% confidence) on the polarization degree. The results strongly indicate that both optical and X-ray polarization originate from synchrotron radiation at the shock formed by the interaction of the pulsar wind with the inner accretion disc.

Finally, simultaneous radio, optical, and X-ray observations obtained as part of this campaign have, for the first time, shed light on the poorly understood flaring mode emission, emphasizing the critical role of outflows in tMSPs.

Primary author: BAGLIO, Maria Cristina (Istituto Nazionale di Astrofisica (INAF))

Presenter: BAGLIO, Maria Cristina (Istituto Nazionale di Astrofisica (INAF))

Session Classification: Poster Session