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Introduction to MAGIC [1] 2) GRB190114C (2019): The first GRB detected at TeV energies, showing clear inverse
e Eirct liqhts Compton emission. Triggered by instruments including Fermi-GBM, Fermi-LAT, and Swift-BAT,
First light: 2004 e . C .
 Location: La Palma, Canary Island Swift's X-ray/UV data confirmed the synchrotron origin of the lower-energy component, while

' ' MAGIC's TeV observations provided direct evidence of inverse Compton scattering. Combined
* No. of telescopes: 2

MWL data support a synchrotron self-Compton (SSC) model, advancing our understanding of
* Mirror: 17 m diameter each GRB physics. [4] [5]
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Why MAGIC needs Multiwavelength (MWL) support? 5 —+‘+ + | o .._xr-«n:—wivh_h@—ljﬂﬁm
Gamma-ray observations alone provide limited context, so MWL data—from X-rays to optical/UV =l » W o tee .'—;'2:15”‘*“*”
and radio—is essential. Many gamma-ray sources (e.g., AGNs and GRBs) emit via synchrotron 5 —— " . LT
and inverse-Compton processes, with the synchrotron peak often in the X-ray band while o e T Ry e PR A
inverse-Compton scattering produces VHE gamma-rays. X-ray data are crucial because they Fig. 4: Light curves in the keV, GeV and TeV T-T, (s)
offer complementary insights into the source’s environment and dynamlcs{ helplng to |dgnt|fy bands, and spectral evolution in the TeV Fig. 5: MWL light curves of GRB 190114C. [5]
sources, reveal spectral properties, track variability, and even probe accretion disk behavior in band for GRB 190114C. [4]
black hole systems. By combining Swift-XRT data with MAGIC observations, we can constrain | | , |
electron energy distributions and magnetic fields, pinpoint emission regions and particle 107
acceleration, rapidly localize transients like GRBs, and detect absorption features from ) i
intervening material. 5 0¥ Fig. 6: Broadband spectra modelling for 68-110
Historical Perspective: Evolution of the MAGICal-Swift bond X 00} s and 110-180 s. Thick blue curve: synchrotron
- - plus SSC afterglow fit, thin solid lines:

MAGIC-I entered its commissioning phase in October 2003 with its first 17-m telescope at La -
Palma. It became stereo when MAGIC-II started taking data in July 2009. In late 2004, the Swift )

. DAT | | | 5 synchrotron and observed SSC components,
1 dashed lines: SSC without internal y-y opacity,

Gamma-Ray Burst Explorer (now the Neil Gehrels Swift Observatory) was launched to rapidly - H and empty circles: observed MAGIC spectrum
detect GRBs and capture their X-ray and optical/UV afterglows. Swift's fast repointing (=75s/50°) Z 10e [ I (uncorrected for EBL attenuation). [5]

and broad spectral coverage provided near-simultaneous MWL data, enabling early coordinated = E 110-180's

observations with MAGIC telescopes. ? 102l

This synergy is a key for understanding transient phenomena—such as GRBs and AGN flares— = «t

by correlating TeV y-ray data from MAGIC with lower-energy emissions from Swift. Over the past 10710 - - -

two decades, the collaboration has evolved from rapid, reactionary observations to o o Eneray (V) "

comprehensive, long-term MWL campaigns. Advancements in instrumentation and refined

analysis techniques of both MAGIC and Swift have enhanced sensitivity, enabling detailed 3) 3C 279 (2009): The first FSRQ detected in TeV energy y-rays by MAGIC in 2006 was reobserved
spectral studies and precise tracking of fast variability. during a major optical flare in January 2007 and again from December 2008 to April 2009 after a

Fermi alert. In January 2009, a low optical to X-ray state observed in Swift's data coincided with

Some Key Results MAGIC's non-detection of VHE y-rays, confirming reduced high-energy activity. [6]
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MJD processes in VHE sources.
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