GRBS AS TRACERS OF (SFR) AND THE DISTANT ISM

Patricia Schady, Lise Christensen, Rob Yates, Annalise De Cia, Kasper Heintz, Anne Inkenhaag, Tanmoy Laskar, Nial Tanvir, Berk Topçu and STARGATE collaboration

High quality GRB afterglow data provide wealth of information on host ISM Dust-to-metals ratio (Schady+07,+10; De Cia+13, 16, 18; Wiseman+17, Zafar+13) ISM metallicity and ionisation state (Fox+08; Cucchiara+15; Heintz+23, Schady+11) Dust extinction curves and depletion (Bolmer+18; Schady+12; Zafar+11, 12, 18) Molecular gas fraction at high-Z (Bolmer+19; Heintz+21; Ledoux+09; Tanga+15)

Probes of ISM in high-z galaxies

Krühler+11

Prochaska+09

PROBES OF NEUTRAL GAS METALLICITY

ABSORPTION METALLICITY EVOLUTION

COSMIC METALLICITY EVOLUTION

7

ABSORPTION VS. EMISSION PROBES

Absorption probes:

- Probe galaxy neutral gas
- More sensitive than emission probes
- Relatively model-independent
- Single sightline through galaxy
- Rare

Emission probes:

- Probe galaxy star forming regions
- Luminosity-dependent probes
- Very model-dependent
- Galaxy-integrated light
- Common

COMBINING EMISSION AND ABSORPTION LINES

- What are absorber characteristic properties?
- How does metallicity of multiphase ISM compare?
- What is effect of pencil beam probe?

Emission Line Metallicities with JWST

GRB050820A Host Galaxy at z=2.613 GRBI50403A Host Galaxy at z=2.057

WST NIRSPEC IFS OBSERVATIONS

Schady+24 (see also Topçu+25, submitted)

GRB HOSTS: BUILDING A 3D PICTURE

AN ABUNDANCE OF INTERACTING SYSTEMS?

GRB090323

(See also e.g. Castro-Tirado+07, Rol+07, Perley+13, Thöne+13Wiseman+17b)

NIRSpec Fixed SLIT Spectra

WHICH METALLICITY DIAGNOSTICS TO USE?

Nakajima+22

Laseter+23

Absorption vs Emission Metallicity

Nakijima+22 R₂₃

 $[X/H] = \log(X/H) - \log(X/H)_{\odot}$

Laseter+23 Â diagnostic

Absorption vs Emission vs Nhi Metallicity

(see also Metha+20,+23)

Absorption vs Emission vs Nhi Metallicity

Nakijima+22 R₂₃

(see also Metha+20,+23)

GRB050505: FINISH WITH A BANG

GRB050505: Absorption vs. Emission Metallicity

Absorption vs Emission line properties

- GRB afterglows provide a truly unique probe of conditions of ISM in high-z galaxies
- JWST allowing absorption and emission line metallicities on sample of GRB host galaxies to be compared for the first time
- Are long GRBs more likely to occur within interacting galaxies?
- Good evidence that GRB sight lines can be used to trace chemical composition of high-z galaxies

But...

- Need to characterise host galaxies of those GRBs with accurate absorption line metallicities
- Wish to understand relation between GRB and QSO-DLA absorbers
- A reliable high-z emission line metallicity diagnostic is of fundamental importance

CALIBRATE HIGH-Z DIAGNOSTICS WITH GRBS?

Laseter+23

PS+24, submitted

THE PECULIAR CASE OF GRB090323

PS+24, submitted

GRB090323: N/O-O/H RELATION AT HIGH-Z

Option 1: Standard N/O-O/H relation, R2&R3 enhanced

GRB090323: N/O-O/H RELATION AT HIGH-Z

Option 1: Standard N/O-O/H relation, R2&R3 enhanced

GRB090323: N/O-O/H RELATION AT HIGH-Z

Option 2: R2&R3 standard, N/O is enhanced

