

Investigating High-Energy Time Lags in Gamma-Ray Bursts with *Fermi*-LAT and GBM

* claudia.maraventano@unipa.it

arXiv:2503.17216

C. Maraventano^{1, 2*}, G. Ghirlanda^{2, 3}, L. Nava^{2, 4}, T. Di Salvo¹, W. Leone⁵, R. Iaria¹,

L. Burderi^{6, 7}, and A. Tsvetkova^{7, 8, 9}

1 Dipartimento di Fisica e Chimica - Emilio Segrè, Università di Palermo, via Archirafi 36 - 90123 Palermo, Italy
2 INAF - Osservatorio Astronomica di Brera, Via E. Bianchi 46, I-23807, Merate (LC), Italy
3 INFN – Sezione di Milano–Bicocca, Piazza della Scienza 3, 20126 Milano (MI), Italy
4 INFN, Sezione di Trieste, I-34127 Trieste, Italy
5 Dipartimento di Fisica, Università di Trento, Sommarive 14, 38122 Povo (TN), Italy
6 Istituto di Astrofisica Spaziale e Fisica Cosmica, Istituto nazionale di astrofisica, via Ugo La Malfa 153, Palermo, I-90146, Italia.
7 Department of Physics, University of Cagliari, SP Monserrato-Sestu, km 0.7, 09042 Monserrato, It
8 INAF – Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Via Piero Gobetti 101, I-40129 Bologna, Italy
9 Ioffe Institute, Politekhnicheskaya 26, 194021 St. Petersburg, Russia

Motivation

Time Lags between GBM and LLE data

We compute spectral lags between the lowest-energy **GBM-NaI**, defined as **Band 1: 10–100 keV**, and the energy ranges:

- GBM-BGO Band 2: 150–500 keV
- GBM-BGO Band 3: 500 keV-1 MeV
- LAT-LLE Band 4: 30–100 MeV.

We obtain spectral lags τ_{12} , τ_{13} , and τ_{14} by means of the discrete Cross Correlation Function method [5].

• For long GRBs, 98% and 94% of τ_{12} and τ_{13} values are positive, indicating soft photons lag hard ones, while negative lags are rare and not significant;

Time Lags and Spectral Evolution of GRBs

dall'Unione europe

Università

degli Studi

di Palermo

INAF

Italiadomani

We propose that the LLE emission (30-100 MeV) can either extend the prompt phase or appear as a delayed, harder component.

By comparing τ_{14} spectral lags with the LLE photon index α_{LLE} , we find a modest correlation where **positive** τ_{14} **values suggest a hard-to-soft evolution, while negative** τ_{14} **points to a new, harder component**. Two GRBs deviate from this expected trend (green points).

• In contrast, only 60% of τ_{14} values are positive and are significantly longer than τ_{12} and $\tau_{13.}$

Some GRBs (e.g., 080916C, 090328A, 150523A) show secondary τ₁₄ values due to double-peaked DCFs;
All short GRBs (in red) show negligible time lags (stars), except for GRB 090510A, which shows a significantly negative τ₁₄ lag.

 τ_{14} (S)

Time Lags and Energy

By comparing the three spectral lag values with the mean energy of the respective channels (Band 2, Band 3, and Band 4), two main trends are seen:

- **40% of GRBs show a decreasing lag with energy**, transitioning from positive to negative at around 10–100 MeV (left plot);
- 36% of GRBs exhibit increasing lags with energy (central plot);
- **24% of GRBs display irregular patterns**, likely due to low signal-to-noise ratio or complex light curve structures (right plot).

Conclusion

Lags within the GBM energy range (10 keV - 1 MeV) are predominantly positive (76%), namely lower-energy photons arrive later than higherenergy ones as a possible consequence of a hard to soft spectral evolution. However, when comparing LLE (30-100 MeV) and GBM bands, in 37% of cases high-energy photons are delayed relative to low-energy ones. These negative lags can be interpreted as due to an additional spectral component rising in the LLE energy range as supported by the spectral analysis of these events.

References: *1 Ryde, F. (2005), A&A, 429(3), 869-879. 2 Preece et al. (2014, Science, 343(6166), 51-54. 3 Ravasio et al. (2019), A&A, 626, A12.*

4 Bernardini et al. (2015), MNRAS 446(2), 1129-1138 *5* Band (1997), The Astrophysical Journal, 486(2), 928.