SPECTRAL STUDIES OF SUPER-EDDINGTON ACCRETING NEUTRON STARS IN THE MAGELLANIC CLOUDS

M. KOUZIS^{1,2}, G. VASILOPOULOS^{1,2}

¹National and Kapodistrian University of Athens ²Institute of Accelerating Systems and Applications

MOTIVATION & GOALS

Be X-ray binaries (BeXRBs) are highly variable systems that host the majority of X-ray pulsars (XRPs). Moreover, the most luminous outbursts of BeXRBs are known to break through the Eddington limit, and offer our nearest window onto Super-Eddington (SE) accretion. The Becker & Wolff (2007) [3] model (BW07) has successfully reproduced XRP spectra in the super-critical regime, particularly for luminosities in the range of 10^{37} - 10^{38} erg s^{-1} . However, its application to SE sources remains limited. Importantly, all these sources exhibit cyclotron resonant scattering features (CRSF), which provide a direct measure of the NS surface magnetic field strength. This motivated us to (see [9]):

PARAMETRIC INVESTIGATION

As reported in [7], the BW07 model may yield solutions that violate the energy. Taking this into account, we performed a Monte Carlo (MC) parametric investigation and identified self-consistent solutions for radiative spectra for all model parameters.

BW07 APPLICATION TO MCS SYTEMS

The fitting process was facilitated in xspec [1]. The best fit parameters lie well under the energy conserved parameter space, see Fig. 1.

- Apply BW07 model to spectra of XRPs in the Magellanic Clouds (MCs) with luminosities exceeding 10^{38} erg s⁻¹. • Search the BW07 parameter space in order to identify self-consistent solutions that conserve energy.
- Take into account the correction implied by the height of CRSF formation.

THE MODEL

BW07 model treats thermal and bulk Comptonization of the hot gas captured in a plane parallel accretion column (AC) with seed photons emitted via blackbody, bremsstrahlung, cyclotron processes. This physical model is applicable above a critical luminosity, where radiation pressure significantly influences the dynamics of the accreting material and becomes dominant [2]. The BW07 model and its adaptations [4] have been effective in reproducing the observed AC spectra in super-critical sources.

It is described by seven main free parameters:

• B (10^{12} G)

• kT_e (keV)

• \dot{M} (10¹⁷ g s⁻¹)

We can write ξ and δ in terms of the parallel ($\sigma_{||}$), perpendicular (σ_{\perp}) and average ($\bar{\sigma}$ taken as the Thomson scatter-

• D (kpc)

• δ

• r₀ (m)

Figure 1: Energy conserved BW07 solutions (grey points).

Setting an acceptance limit of < 20% between the X-ray and accretion luminosity, only 3% of the initial sample yielded energy-conserved solutions.

CYCLOTRON LINE FORMATION

In order to reduce the number of free parameters, we used the CRSF as a direct measure of the local magnetic field in which the scattering occurs.

Energy (keV) Figure 4: Upper panel: Unfolded *NuSTAR* spectra in 3-70 keV fitted with gabs*(BWcycl + gauss) model. Lower panel: Spectral residuals with (blue) and without (orange) CRSF component to the best-fitted model.

	SMC X-2	RX-J0520	RX-J0209
$E_{\rm cycl}$ (keV)	27.4 ± 0.4	31.5 ± 0.3	27.9 ± 0.5
$\sigma_{\rm cycl}$ (keV)	8.9 ± 0.5	6.5 ± 0.3	11 ± 1
D (loV)	19.1 ± 1.6	10.4 ± 0.0	6 ± 1

ing) cross-sections.

OBSERVATIONAL DATA

We analyzed eight *NuSTAR* observations from three systems in the Small and Large Magellanic Cloud (SMC, LMC) during major outbursts. RX J0520.5-6932 (J0520) in the LMC where three observations were performed during its 2014 and 2024 major outbursts. For SMC X-2 in the SMC we worked on four observations that were performed during its 2015 and 2022 major outbursts. RX J0209.6-7427 (J0209) in the Magellanic Bridge, where one observation was performed during its 2019 major outburst. NuSTAR data were reduced with nupipeline version 0.4.8 and CALDB version 20240315.

REFERENCES

[1] Arnaud K. A., 1996, in Astronomical Society of the Pacific Confer-

$$E_c = \frac{eB\hbar}{m_{\rm e}c} \approx 11.57 \left(\frac{B}{10^{12}{\rm G}}\right) {\rm keV}$$

The CRSF is imprinted at some height above the NS surface. The surface cyclotron energy that is linked to the intrinsic magnetic field is given by $E_{cycl}^{obs} = E_{cycl}^{surf} \times f_{GR} \times$ $f_{DE} \times S_{dip}$ [5], where f_{GR} and f_{DE} are the corrections from gravitational redshift and Doppler effect, respectively, and S_{dip} the dipole term.

Figure 2: Observed cyclotron-line energy evolution of the source V0332+53 with X-ray luminosity.

In our analysis, we adopt the correction factor found in the case of V0332-53 [8]. Therefore, for the fitting process, the magnetic field is calculated as $B_{BW07} = \frac{E_{cycl}^{oor}}{11.57 \text{keV}} \times 2.$

$\mathcal{D}_{\text{CYCl}}(\mathbf{RCV})$	10.7 ± 0.0	$0 \perp 1$

Table 1: Cyclotron line parameters for different sources.

HARDNESS INTENSITY DIAGRAM

RX J0520.5-6932, is a 8.04 sec XRP in the LMC. The 2013-2014 major outburst was followed by Swift/XRT.

where H, M and S are the high (4-10 keV), medium (2-4 keV) and soft (0.3-2 keV) band count rates.

In the high intensity state and close to the Eddington limit, HR₁ follows a diagonal branch which is also reported in [6]. For the S band, however, there are extra caveats concerning the soft excess. In the case of HR_2 , known HID patterns seem to break well above the Eddington limit. The data points change orientation.

- ence Series, Vol. 101, Astronomical Data Analysis Software and Systems V, Jacoby G. H., Barnes J., eds., p. 17 [2] Becker P. A. et al., 2012, A&A, 544, A123 [3] Becker P. A., Wolff M. T., 2007, ApJ, 654, 435 [4] Becker P. A., Wolff M. T., 2022, ApJ, 939, 67
- [5] Loudas N., Kylafis N. D., Trümper J., 2024, A&A, 689, A75
- [6] Reig P., Nespoli E., 2013, A&A, 551, A1
- [7] Thalhammer P. et al., 2021, A&A, 656, A105
- [8] Tsygankov S. S., Lutovinov A. A., Serber A. V., 2010, MNRAS, 401, 1628
- [9] Vasilopoulos G. et al., 2025, Astronomische Nachrichten, 346, e20240114

CONTACT INFO

Questions and feedback are welcome:

M.K.: makouz@uoa.gr, G.V: gevas@uoa.gr

Authors acknowledge support from the Hellenic Foundation for Research and Innovation (H.F.R.I.) through ASTRAPE (Project ID 7802).

Figure 3: Corner plot of V0332-53 using the [5] model with critical luminosity as a free parameter.

CONCLUSIONS & FUTURE WORK

• The BW07 parameter space is successfully explored identifying energy-cornserved solutions for SE accretion. • A physically motivated model like BW07 is able to reproduce the spectral shape of SE sources in the MCs. • Geometrical solutions (i.e. accretion column radius) yield to "nonphysical" conditions and cannot be accounted reliable for SE sources.

• Based on the best fit parameters of RX J0520 during the 2013-14 major outburst, we will probe its spectral transition and validate with Swift/XRT HID. *Stay tuned!*