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Introduction
We’ve developed a density estimator for 1-D point
processes. It is based on the continous smooth
function approximation, while information in the
global density distribution is also applied. Using
MC simulations we’ve determined the optimal
parameters for low count distributions like the
GRBs’ redshift data. The results detailing the GRBs’
redshift distribution also discussed briefly.
Observational data indicate that a substantial
fraction of GRBs originate from high redshifts, often
z > 5, suggesting that these events were more
prevalent in the early universe. The observed
variation in GRB redshifts is influenced by multiple
factors, including the sensitivity of detection
instruments and observational biases. GRBs at
very high redshifts may be underrepresented due
to technological limitations and the challenges
associated with follow-up observations. Recently
Ghirlanda et al. studied the evolution of
GRB formation rates and luminosity functions by
analyzing extensive datasets from Fermi, Swift, and
CGRO. The data shows that the LGRB formation
rate increases steeply with redshift up to z ≈ 3
before declining, due to the preference for low-
metallicity environments.
In this study we used a comprehensive database
of GRBs with spectroscopic redshifts, primarily
detected by NASA’s Swift and Fermi missions. We
utilize the same dataset as referenced in Horvath
et al., 2022, Bagoly et al., 2023, and Horvath et
al, 2024. The redshifts sourced from the Gamma-
Ray Burst Online Index (GRBOX), GCN reports
and J Greiner’s compilation webpage. Our dataset
includes observations through August 31, 2022,
with 542 GRBs. For more details on the dataset’s,
refer to (Horvath et al, MNRAS 2024).

Model functions and estima-
tors

We’ve generated three model distribution from
the data. For density estimations the kernel
based methods are popular. The fixed-bandwidth
kernel density estimate uses a kernel with a
given bandwidth to smooth data. The bandwidth
controls the spread of each kernel, with larger
values creating wider, smoother estimates and
smaller values producing narrower, more focused
ones. Adaptive bandwidth estimation allows
kernel bandwidths to vary based on local
data density, improving performance over fixed-
bandwidth methods. The bandwidth is defined
as a function of data coordinates, a popular
choice is the Abramson’s method (Annals of
Statistics,10(4):1217â1223, 1982.) which sets it
inversely proportional to the square root of the
target density. This reduces smoothing in high-
density areas for finer detail and increases it in
low-density regions, and it is combined with edge
correction for density estimation. Using the CRAN
R program language we used the npreg package to
generate a spline based density estimator (Spline
Model). The KernSmooth function from the
same package was used to generate an optimal
fixed bandwith estimator (bw = 3841/hMpc)
(Smooth Model). The spatstat.univar library’s
densityAdaptiveKernel method to generate an
adaptive bandwidth estimator - but here we
reduced the optimal smoothing size to 20% of
its optimal value to generate an artificial rapidly
changing model (Adaptive Model).
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Fig. 1: The three model function used in the test, all generated
from the real data: the Spline(pink), the Smooth(green) and the
high-frequency Adaptive Model(blue).

The Continuous-Function Esti-
mator

The Continuous-Function Estimator is a novel
approach to estimating density functions like
the two-point correlation function (Storey-Fisher
and Hogg, 2021). Unlike conventional methods
that rely on hard-edged separation bins, this
estimator utilizes a continuous representation by
projecting data onto a set of user-defined basis
functions. It allows for a more flexible and accurate
representation of a function, as it can adapt to the
expected shape of the function. The Continuous-
Function Estimator is inspired by least-squares
fitting,
The Continuous-Function Estimator replaces the
traditional binning with cubic splines as basis
functions of < spi|. The cubic spline basis functions
are selected for their ability to provide a smooth
and accurate fit, as they maintain continuity and
differentiability. It projects the data onto the spline
basis: here we have 542 Rj distance values in the for
of Dirac-deltas. Projecting these p(rj) to the < spi|

basis we obtain the cij =< spi|p(rj) > values and one
can reconstruct the density function in the form of
p(r) = cij|spi >. We used a 1 (1/hMpc) grid, up to
6400 (1/hMpc). The cubic splines have a compact
support, the bandwidth was fixed for 96 bin, with
a forresponding FWHM width of 138.4 1/hMpc for
all catalogue sizes.

Fig. 2: The cubic splines used for the Continuous-Function
Estimator. The ith line in the image is the |spi > cubic spline base
function.

To generate random catalogues we’ve sampled the
model functions 100 times using event numbers
of [128, 256, 512, 1024, 2048]. To compare the
efficiency of the Continuous-Function Estimator
we’ve calculated the mean integrated squared
error (MISE) value between the model function
and the density estimation produced by the
random catalogues. The catlog estimation was
repeated with the R CRAN spatstat.univar library’s
densityAdaptiveKernel method with the optimal
kernel sizes, and the corresponding MISE was
calculated as well.

Results
On Figs. 3-5. the MISE values for the two methods
for different catalogue sizes and different original
models can be seen. One can observe that the
Continuous-Function Estimator fits the data better
than the densityAdaptiveKernel method above
N ≈ 512 for the Spline and Smooth Model, and
it is better for densityAdaptiveKernel fitting of the
Adaptive Model above N ≈ 850 .
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Fig. 3: The MISE values for the Continuous-Function Estimator
(green) and the densityAdaptiveKernel (blue) method for the
Spline model
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Fig. 4: The MISE values for the Continuous-Function Estimator
(green) and the densityAdaptiveKernel (blue) method for the
Smooth model
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Fig. 5: The MISE values for the Continuous-Function Estimator
(green) and the densityAdaptiveKernel (blue) method for the
Adaptive model

The Poisson noise makes the two estimation
methods quite similar in efficiency around N = 542,
so here we can use either to smooth the GRB density.
On Fig. 6 the GRB rate was plotted in scaled units of
h3/Mpc3/yr vs. the 1+ z redshift. The well-known
maximum at z ≈ 2.6 is imminent.
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Fig. 6: The GRB rate in scaled units of h3/Mpc3/yr as a function
of the 1 + z redshift. The well-known maximum at z ≈ 2.6 is
visible.


