Swift20 - Firenze - 24-28 March 2025

TOOMANY ORJUST RIGHT? MASSIVE JETTED QUASARS IN THE EARLY UNIVERSE

Tullia Sbarrato INAF - Osservatorio Astronomico di Brera

mainly with S. Belladitta, J. Wolf, M. Salvato for the newest results

tullia.sbarrato@inaf.it

JETTED AGN @HIGH-Z: WHAT DO WE SEE?

quasars:

broad emission lines bright big blue bump high accretion rate $\lambda_{\rm Edd} > 10\%$

high redshift: z>4

very massive black holes:

mostly $M_{\rm BH} > 10^9 M_{\odot}$ always $M_{\rm BH} > 5 \times 10^8 M_{\odot}$

THE MOST COMMON JET TRACER

Kellermann et al. 2016

radio-loudness: jet-to-nucleus ratio

$$R = \frac{F_{5\,\text{GHz}}}{F_{4400\,\text{\AA}}}$$

tracer of jet presence when extreme, traces jet orientation

155/236 z>5.7 quasars with radio detection:

radio-loudness fraction: 9.4 ± 5.7% consistent with local Universe

THE MOST COMMON JET TRACER

$$R = \frac{F_{5\,\mathrm{GHz}}}{F_{4400\,\mathrm{\AA}}}$$

BLAZARS AS JET TRACERS

$\Gamma \sim 10 - 15$

bulk Lorentz factor of jet emitting region

Ghisellini et al. 2017

viewing angle: $\theta_{\rm v} < 1/\Gamma$ analogous jetted AGN, randomly oriented: $2\Gamma^2 \sim 200 - 450$

BLAZARS AS JET TRACERS

$\Gamma \sim 10 - 15$

bulk Lorentz factor of jet emitting region

Ghisellini et al. 2017

viewing angle: $\theta_{\rm v} < 1/\Gamma$ analogous jetted AGN, randomly oriented: $2\Gamma^2 \sim 200 - 450$

FIRST SYSTEMATIC SEARCH OF BLAZARS @Z>4

SDSS+FIRST quasar catalog

105783

12 "newly" classified blazars thanks to dedicated Swift/XRT observations ... and we keep counting!

> ~4000 analogous jetted sources!

TS+12,13b,22

Z>4 BLAZARS AND E-ROSITA

51+1 confirmed blazars

via radio, X-ray or multi wavelength features

17+1 detected in the eRO-4.5 survey

ERO-DETECTED BLAZARS

Wolf et al. 2024 eRASS:4

spectroscopic follow-up, radio variability, broad-band study

ERO-DETECTED BLAZARS

significant X-ray excess wrt Coronal emission

well constrained X-ray spectrum

enough flux to test variability

eRO-4.5

TS et al in prep eRO-4.5

THE MAJORITY OF Z>4 (JETTED) QUASARS ACCRETES BELOW THE EDDINGTON LIMIT

TS et al in prep eRO-4.5

MASSIVE SMBHS SEEM TO PREFER FORMING/LIVING IN JETTED AGN AT VERY HIGH REDSHIFT

most z>4 blazars accrete sub-Eddington:

there is not enough time to grow them from 100 M_{sun} black hole seeds at their observed rate

WHY DO THEY SEEM TO ACCRETE SLOWLY?

GB 1508+5714 (z=4.31): highest-z Fermi blazar

 $\lambda_{\rm Edd} \sim 10 \,\%$ $Log M_{vir}/M_{\odot} = 8.52$

KERBB and SLIMBH: $Log M/M_{\odot} \sim 8.2 - 8.8 \quad \lambda_{Edd} \sim 6 - 4\%$ Alzati et al. subm.

extended jet observed in LOFAR: **135kpc** estimated hotspot speed: 0.06c

jet age: **7.3 Myr**

what if:

- these sources had evolved
 - with the observed rate
- only since the jet was launched?

WHY DO THEY SEEM TO ACCRETE SLOWLY?

Alzati et al. subm.

reasonable (50-100 M_{sun}) BH seeds at redshift 5 to 8

SO MANY JETTED QUASARS!

accretors at high-z: previous super-Eddington accretion triggering jets?

jetted AGN do not seem to be fast at high z, jets are more numerous than expected

> massive SMBHs seem to prefer forming/living in jetted AGN at very high redshift

eROSITA: very efficient in observing jets at z>4!

tullia.sbarrato@inaf.it

