Image Credit: Aaron Geller, Northwestern

THE DIVERSITY OF NS MERGER COUNTERPARTS REVEALED BY SWIFT

JILLIAN RASTINEJAD

Northwestern Presidential Fellow

Northwestern

С

R FOR INTERDISCIPLINARY EXPLORATI

The EM Counterparts to NS Mergers

Swift's Untouched Legacy in sGRB afterglows...

sGRB 050509B:

XRT associates sGRB to quiescent host Allows deep limits on sGRB optical AG

Gehrels+05, see also Bloom+06

sGRB 050709:

XRT confirms fading counterpart, First optical sGRB afterglow

Fox+05, see also Hjorth+05

Enabled first constraints on jet energies, insight to host environments + redshift distribution, etc.

Swift's Untouched Legacy in sGRB afterglows... continues to this day!

sGRB 241113A

Gemini-S/GMOS, PI: Fong dt ~ 2 months

> Rapid-response of Swift enabled early AG detections

Deep Gemini follow-up constrains decline rate

4 Swift sGRBs in last 5 months

sGRB 250128B

XRT accuracy enables to identify r~25.4 mag host -> dwarf or high-z? (Rastinejad et al. GCN 39088)

Swift's Untouched Legacy in sGRB afterglows... continues to this day!

С

FOR INTERDISCIPLINARY EXPLORATI

The EM Counterparts to NS Mergers

The Future: Cosmic Explorer + Einstein Telescope will see NS mergers out to z ~ 2

Reitze et al., arXiv: 1903.04615 Updated version: Evans et al. 2021; CE Horizons Study Ionova too faint for currer telescopes at z > 0.6

The Future: Cosmic Explorer + Einstein Telescope will see NS mergers out to z ~ 2

Best observational constraints on off-axis afterglows: on-axis Swift afterglows!

Reitze et al., arXiv: 1903.04615 Updated version: Evans et al. 2021; CE Horizons Study e.g., Rouco-Escorial+23, Morsony+24, Kaur+24

С

R FOR INTERDISCIPLINARY EXPLORATION

The EM Counterparts to NS Mergers

JILLIAN RASTINEJAD, SWIFT 20 BDAY, MARCH 2025

PREDICTIONS FOR KILONOVA DIVERISTY

Progenitor Diversity

NS

e.g., Mass ratio, spin, magnetic field strength

NS

NS BH Merge BH

Merge

Remnant

Diversity

t~ms

BH

BH

NS

Observables

e.g., Metzger+19, Shibata+19, Kawaguchi+22

LIGO

TER FOR INTERDISCIPLINARY EXPLORATION

e.g., Smartt+17, Yang+18, Andreoni+21

11

Blind Searches in Large Surveys

Virgo

Gravitational Waves

Observational Searches for NS Mergers

Swift

GRBs

JILLIAN RASTINEJAD, SWIFT 20 BDA'

GRB 211211A:

The 50-s GRB 211211A with a kilonova counterpart

Kilonova red + fades like AT2017gfo

-> diversity in the merger systems that create GRBs?

JILLIAN RASTINEJAD, SWIFT 20 BDAY, MARCH 2025

С INTERDISCIPLINARY EXPLORATI

Uniform Modeling of eight kilonovae

15

15

0

0

30

Takeaway 1:

GW170817 is an "average" kilonova compared to the sample

Rastinejad+25

Rastinejad+25

Trend between GRB energy and dynamical ejecta

С

Rastinejad+25

Trend between GRB energy and dynamical ejecta

Predicted outcome for asymmetric compact object binary progenitor (Gottlieb+23)

Asymmetric binaries seen in GWs: GW190425, GW230529

Rastinejad+25

Conclusions

Thank you Swift team! Here's to another 20 years!

Northwestern

<u>Takeaways:</u>

Swift short GRB afterglow diversity = critical for next-generation MMA predictions.

Swift has enabled rapid follow-up discoveries of kilonovae following both short and long GRBs, revealing unprecedented diversity

<u>Thanks to a large team</u>, including Wen-fai Fong + the Fong research group, Andrew Levan, Charlie Kilpatrick, Matt Nicholl, Brian Metzger

Northwestern

With 5-day cadence + NIR coverage, Roman can observe the full luminosity distribution of KNe over 2-3 epochs -> sufficient for ejecta mass constraints

Observed Diversity of Kilonovae

Rastinejad+25

Northwestern

Afterglow + Kilonova Diversity Observed from Short GRBs

