Multiwavelength Follow-up Observations of Astrophysical Neutrino Events

RileyAnne Sharpe¹, Marcos Santander¹, Sara Buson² ¹University of Alabama, ²DESY

Celebrating 20 Years of Swift Discoveries Mar 24–28, 2025

IceCube and Astrophysical Neutrinos

- IceCube Neutrino Observatory has detected a high-energy diffuse neutrino flux.
 - No sources have been identified at the 5σ level.
 - 4.2σ association of neutrino excess with NGC 1068 announced in 2022.
- IceCube real time alert system allows for multiwavelength follow-ups.
 - Gold events have ~50% average likelihood of being astrophysical in origin.

Event display for the neutrino event IC170922A <u>Aartsen M. G., et al., 2018, Science, 361, eaat1378</u>

Counterparts to Astrophysical Neutrinos

- The blazar TXS 0506+056 was found to be in the 50% containment region of the neutrino alert IC170922A.
- Archival analysis found evidence of a "neutrino flare" at the 3.5σ level at the location of this source in 2014-2015.
- Connections between astrophysical neutrinos and high energy photons could help explain acceleration mechanisms in AGN jets.

Fermi-LAT observation of TXS 0506+056 showing its location within the 50% containment region of IC170922A

<u>Aartsen M. G., et al., 2018, Science, 361, eaat1378</u>

Leptonic vs. Hadronic Models

Gao, S., Fedynitch, A., Winter, W., & Pohl, M. 2019, Nature Astronomy, 3, 88

- Leptonic Model
 - Lower energy hump modeled by electron synchrotron radiation.
 - Higher energy hump modeled by inverse Compton scattering.
 - Fits EM observations well.
 - Has no mechanism for producing neutrinos.

4

Leptonic vs. Hadronic Models

Gao, S., Fedynitch, A., Winter, W., & Pohl, M. 2019, Nature Astronomy, 3, 88

Hadronic Model

- Lower energy hump modeled by electron synchrotron radiation.
- Higher energy hump modeled by proton interactions producing π^0 and π^{\pm} .
 - Charged pion decay products include neutrinos.
- Overestimates EM flux, especially in Xrays and ~MeV gamma-rays

Leptonic vs. Hadronic Models

- A hybrid lepto-hadronic model can solve the issues found in both individual models.
- X-rays are key in constraining the contributions of both model components.

Gao, S., Fedynitch, A., Winter, W., & Pohl, M. 2019, Nature Astronomy, 3, 88

Swift Follow-up Campaigns

- Follow-up program targeting sources similar to TXS 0506+056:
 - Began in Swift Guest Investigator Cycle 16 (2020), and continues to present.
 - Prompt observations of Fermi-detected sources located within the error region of an IceCube Gold alert.
 - Collect 4 ks as quickly as possible after neutrino detection.
 - 4 ks more ~48 hrs later to look for fast variability.
 - 4 ks more ~few weeks later to look for longer timescale variability.

NASA E/PO, Sonoma State University/Aurore Simonnet

Swift Follow-up Observations

Neutrino Event	Signalness	So
IC190704A	48.6%	1WHSP J104
IC190730A	67.2%	PKS 1
IC200530A	59.2%	4FGL J17
		4FGL J16
IC201114A	56.2%	4FGL J06
IC211208A	50.2%	PKS
IC220425A	49.7%	NVSS J17
IC220624A	60.9%	Fermi J1
IC220629A	30.1%	IceCube
IC221223A	79.5%	TXS 2
IC230724A	52.7%	4FGL J0
	62.5%	4FGL J17
IC231027A		4FGL J17
		4FGL J17
IC231211A	27.7%	PKS 2
IC240105A	30.1%	PKS
IC240307A	60.6%	4FGL J1
IC240424A	50.8%	4FGL J2 ⁻

urce

- 516.2+275133
- 502+106
- 702.2+2642
- 659.0+2627
- 658.6+0636
-)735+17
- 5236-101145
- 458.0+4119
- -220629A
- 320+343
- 212.2-0219
- 740.0+4737
- 750.2+4704
- 747.9+4704
- 047+098
-)446+11
- 557.2+3822
- 49.6+0323

- Signalness provided by IceCube gives a measure of how likely it is that each neutrino is of astrophysical origin.
- Swift ToO observations typically performed within hours of neutrino detection.

8

Swift Follow-up Observations

Signalness	So
48.6%	1WHSP J104
67.2%	PKS 1
59.2%	4FGL J17
	4FGL J16
56.2%	4FGL J06
50.2%	PKS (
49.7%	NVSS J17
60.9%	Fermi J1
30.1%	IceCube
79.5%	TXS 2
52.7%	4FGL J0
	4FGL J17
62.5%	4FGL J17
	4FGL J17
27.7%	PKS 2
30.1%	PKS (
60.6%	4FGL J1
50.8%	4FGL J2 ⁻
	Signalness 48.6% 67.2% 59.2% 59.2% 56.2% 49.7% 60.9% 30.1% 79.5% 52.7% 62.5% 62.5% 30.1% 62.5%

urce

4516.2+275133

502+106

702.2+2642

659.0+2627

658.6+0636

0735+17

5236-101145

458.0+4119

e-220629A

320+343

212.2-0219

740.0+4737

750.2+4704

747.9+4704

047+098

)446+11

557.2+3822

49.6+0323

- Signalness provided by IceCube gives a measure of how likely it is that each neutrino is of astrophysical origin.
- Swift ToO observations typically performed within hours of neutrino detection.

8

High energy neutrino detected during a period of decreasing gamma-ray and X-ray flux between two potential flares.

High energy neutrino detected during a period of decreasing gamma-ray and X-ray flux between two potential flares.

Oikonomou et al. 2021

• Oikonomou et al. 2021 found that a leptohadronic model works well to fit the SED of the source in its average long-term state.

Rodrigues et al. 2021 found that both leptohadronic and proton synchrotron models can explain the high-energy emission at the time of the neutrino event.

Oikonomou et al. 2021

• Oikonomou et al. 2021 found that a leptohadronic model works well to fit the SED of the source in its average long-term state.

Rodrigues et al. 2021 found that both leptohadronic and proton synchrotron models can explain the high-energy emission at the time of the neutrino event.

IC211208A and PKS 0735+17

VERITAS Collaboration et al. 2023

Source located outside 90% uncertainty region for location of IceCube neutrino. High energy neutrino detected preceding a period of enhanced gamma ray and X-ray flux.

IC211208A and PKS 0735+17

- SED can be fit with lepto-hadronic model with external photon field.
- SSC model doesn't fit unless the synchrotron peak extends into the far-UV band that the observations do not cover.

VERITAS Collaboration et al. 2023

IC240105A and PKS 0446+11

- 0 XRT/UVOT, NuSTAR, Fermi and VERITAS.

High energy neutrino detected preceding a period of enhanced gamma ray and X-ray flux. Work to model the SED for this source is currently in progress, including data from Swift

IC240105A and PKS 0446+11

- O
- 0 XRT/UVOT, NuSTAR, Fermi and VERITAS.

High energy neutrino detected preceding a period of enhanced gamma ray and X-ray flux. Work to model the SED for this source is currently in progress, including data from Swift

Conclusions

- The sources of high energy neutrinos detected by IceCube remain unknown.
- Blazars are potential sources for individual high-energy neutrinos.
- X-rays are a key component in determining production mechanisms for neutrinos emitted by blazars/
- Thank you to the Swift team!

Martin Wolf IceCube/NSF

