

join us

eil Gehrels Swift

24 - 28 **MARCH 2025**

Celebrating 20 years of Swift Discoveries

.

SOC:

Sergio Campana Brad Cenko (co-chair) Massimo Della Valle Nathalie Degenaar Phil Evans Wen-fai Fong Suvi Gezari Erin Kara Jamie Kennea Raffaella Margutti John Nousek Paul O'Brien Gianpiero Tagliaferri (co-chair) Susanna Vergani Bing Zhang

LOC:

Maria Cristina Baglio Maria Grazia Bernardini Riccardo Brivio Paolo D'Avanzo (chair) Matteo Ferro Sara Motta Andrea Saccardi Chiara Salvaggio **Tullia Sbarrato** Boris Sbarufatti

> Poster design by Laura Barbali

> > AL 1 1 1

25 March 2025

GRBs as probes of the high-z Universe

ANDREA SACCARDI CNES Postdoctoral Fellow @CEA/Irfu/DAp - AIM

The Distant Universe

-What are the first objects to be formed in the Universe? -How do galaxies form and evolve? -What is the interplay between star formation and the inter-stellar gas?

High-redshift Galaxies: Current State of the Art

The advent of JWST is revolutionizing the field, allowing:

The observation of galaxies up to a <u>spectroscopically</u> confirmed redshift of z~14

Carniani et al. 2024

JADES-GS-z14-0

25/03/2025

Heintz et al. 2024

Direct measurement of neutral

-2

<u>hydrogen gas</u> reservoirs in the local environments of galaxies at z > 8!

ANDREA SACCARDI

LGRBs as probes of the high redshift Universe

The FAINTNESS of these galaxies limits the available diagnostics even for JWST

--> FEW CONSTRAINTS ON **THE PROPERTIES OF NEUTRAL COLD/WARM GAS IN GALAXIES**

GRBs ARE IDEAL TOOLS to explore the properties of faint high-redshift star-forming galaxies !

25/03/2025

Credits: Adapted from ESO PR0813a

The powerful potential of LGRBs afterglow to access detailed information on the <u>neutral gas and its components</u>

We can measure:

Redshift of the absorbers Column densities of the ions of different chemical elements

ANDREA SACCARDI

To study:

-Metallicity and dust depletion -The distance of the corresponding gas clouds -Kinematic of the gas -Chemical abundance pattern

Stargate Collaboration PIs: N. Tanvir, S.D. Vergani, D. Malesani

ESO Large Programme GRBs Follow-up with optical-NIR telescopes

25/03/2025

ANDREA SACCARDI

Credits: ESO/M. Claro

High-z GRBs

Redshift (z)

See B. Cordier's Talk!

rebinned 2D

-High performance of VT in quickly identifying a potential high redshift candidate -Synergy with other space satellites such as *Swift*, EP -Powerful and successful follow-up with ground-based telescopes e.g. NOT and VLT

z~7.3 Lya break

ANDREA SACCARDI

High-z GRBs

High-z GRBs

Redshift (z)

Dissecting the interstellar medium of a z = 6.3 galaxy. X-shooter spectroscopy and HST imaging of the afterglow and environment of the Swift GRB 210905A **@A&A Paper - <u>A. Saccardi et</u> al.** Published (2023, A&A, 671, A84, 21 pp)

After ~2.53hr

(obs frame)

Credits: Stargate/A. Saccardi

ANDREA SACCARDI

GRB210905A VLT/X-shooter Spectrum

25/03/2025

-The z~6.3 complex spans ~360 km s⁻¹ and is composed of two major systems (A and B) separated by ~300 km s⁻¹, and formed by six components -Fine-structure lines in both systems (components II, III, V, VI)

Saccardi et al. 2023

The overall host galaxy

We perform a detailed analysis of metallicity, chemical enrichment and dust depletion

Following De Cia et al. 2016, De Cia et al. 2021

AXIS

X = How refractory is an element Y = Elements abundances

FIT

Slope $-> [Zn/Fe]_{fit}$ Intercept $-> [M/H]_{tot}$

The GRB host galaxy at z = 6.312

We perform a detailed analysis of metallicity, chemical enrichment and dust depletion

The overall host galaxy

12

Component-by-component

ANDREA SACCARDI

-We find that the dust-corrected metallicity of the GRB host is [M/H] = -1.72 + /-0.13 and DTM = 0.18 + /-0.03-We determine the total abundance pattern and for each component: the abundance ratios, [X/Fe]_{nucl}, are due to the effect of nucleosynthesis

ANDREA SACCARDI

GRB210905A HST/WFC3 Image <u>After ~250 days obs frame</u>

Saccardi et al. 2023

IFU spectroscopy of the GRB host field (To be re-submitted)

The GRB host galaxy at z = 6.312

Follow-up observations

-2nd HST epoch in two different filters (F140W and F775W) (Executed)

δ object at lower redshift (detected in F775W filter)

-ESO/MUSE **IFU** spectroscopy of the GRB host field (Executed) PI: A. Saccardi

No sign of Ly α emission and/or presence of a Ly α blobs extending over the possible galaxy group

-JWST

Detect Hα, Hβ, [OIII] λ 5007 to:

-determine the redshift of the objects; -the presence of a galaxy group/clumps; -studying different phases and kinematics of the gas

The metal rich GRB240218A host galaxy at z = 6.782**@A&A Letter - <u>A. Saccardi</u> et al. in preparation**

25/03/2025

Credits: Stargate/A. Saccardi

<u>After ~26.47hr</u> (obs frame)

ANDREA SACCARDI

The GRB host galaxy at z = 6.782

—-> The highest neutral hydrogen column density at high redshift!

ANDREA SACCARDI

Credits: Saccardi et al in prep

ANDREA SACCARDI

Credits: Saccardi et al in prep

Credits: Saccardi et al in prep

(i) poor fraction of GRBs with an optical/NIR afterglow <u>spectrum(20-30%)</u>

(ii) <u>lack of satellites capability</u> to detect high-redshift GRBs

Thanks to GRB afterglow spectroscopy we can reach the high redshift Universe and populate the reionization era (i.e. z>6)

ANDREA SACCAKDI

See B. Cordier's Talk!

See F. Daigne's Talk!

SVOM

GOAL: boost to 50/60% the fraction of GRBs with redshift determination and enhance the number of high-z GRBs

-An energy threshold of γ -ray detector at 4 keV may enable the detection of **faint soft GRBs** (e.g. high-redshift GRBs)

-Good sensitivity of the on-board optical telescope:

(i) detect and localize GRB afterglow (ii) rapid pinpoint to high-z candidates (r~22.5 (AB) in 300s)

Credits: SVOM

-A near anti-solar pointing ensuring that **SVOM GRBs are** observable from earth

25/03/2025

SVOM

Credits: COLIBRI&A. Watson, UNAM

-SVOM F-GFT localization < 1''mirror of 1.3 m *FoV of 26' ×26'* 400nm to 1800 nm *r* = 22 *mag in 300 s*

i.e. ground based telescopes (SVOM/F-GFT) COLIBRI

-Agreements to obtain the spectroscopic observations of SVOM-GRB with large ground-based telescope

satellite ~ 930 kg payload $\sim 450 \text{ kg}$

C-GFT

prompt observation

follow-up observation

Svom

ANDREA SACCARDI

Credits: Atteia et al. 2022, SVOM

See L. Amati's Talk!

Long term Perspectives

Selected for ESA M7 **Phase-A**

http://www.isdc.unige.ch/theseus

THESEUS Payload

-Soft X-ray Imager $(SXI, 0.3 - 5 \ keV)$

-X-Gamma rays Imaging Spectrometer (*XGIS*, 2 *keV* – 10 *MeV*) -InfraRed Telescope

(IRT, 0.7 – 1.8 μm)

(i) X-ray large FoV (0.5 sr) (ii) precise source localization (0.5 to 2 arc-min) (iii) low resolution spectroscopy on-board (R~400)

-Three fibre-fed spectrographs (UBV, RIZ, YJH) -Spectral resolution of R~100,000 -Simultaneous wavelength coverage of 0.4-1.8 μ m -Goal of extending to 0.35-2.4 μ m (K band spectrograph)

(i) reach the SNR levels needed to study the faint high-z sources (ii) resolve narrow absorption lines (iii) constrain key elements column density (iv) study relative abundances in individual gas components

ANDREA SACCARDI

Thanks for your attention!

ANDREA SACCARDI CNES Postdoctoral Fellow @CEA/Irfu/DAp - AIM andrea.saccardi@cea.fr

-Unveiling galaxies at the highest redshifts and studying their chemical properties is a key objective in modern astrophysics

-Bright background sources are needed to study in detail the properties of the neutral gas

-GRBs are very powerful tools to probe the ISM of high-redshift galaxies and their metal and dust content

-Thanks to GRB 210905A and GRB 240218A we were able to obtain unique and detailed information of the neutral gas and its chemical composition

-The future is bright thanks to new space missions such as SVOM, Einstein Probe and hopefully THESEUS in synergy with ground-based observations (e.g. SOXS, ELT/ANDES)

> Saccardi et al. 2023a A&A 671, A84

