Flares, energy injection, and decoding broadband GRB afterglows via XRT observations

Gavin P Lamb

Royal Society Dorothy Hodgkin Research Fellow

Liverpool John Moores University

...and all my great collaborators

THE

ROYA

Celebrating 20 years of Swift Discoveries 3pm, 25 Mar 2025, Florence, Italy

Flares and energy injection in the afterglow

- The classic picture of an afterglow is a homogeneous 'puck' of relativistic plasma slowing down due to the mass of swept-up ISM material
 - Homogeneous because of the passage of shock reverse shock
 - Puck', because of the short engine timescale
- But the afterglow does not always behave like this

GRB emission via

energy dissipation

 $T_{dur} \sim t_{visc} \sim 2\pi r^{3/2} / \left[\alpha (GM_{\bullet})^{1/2} \right] \qquad (\Delta = T_{dur} c)^{1/2}$

 $M(r) \propto r^3$ $M(r) \sim E_0/c^2$ Forward shock in

swept-up ISM

Reverse shock crosses

The trouble with idealistic afterglow models

- Observations*, typically start after ~1 hour
 - Early radio is complicated by scintillation (not shown)
- And self-absorption the difference between

redback_tophat
and afterglowpy at
1 GHz

- Optical has rapid decline, but thermal transients can become prominent
- Other than spectral break differences, x-ray is well behaved

- Afterglow model lightcurves from Redback (Sarin,...GPL, et al. 2024)
- Afterglowpy and redback_tophat, plus a kilonova (left) and supernova (right)
- Lightcurves at Radio, optical, x-ray frequencies
- Time scale is 14 minutes to 30 (left) or 100 (right) days

The case of GRB 160821B

- Observations start at about 1 hour
- All are declining
- But not as a single power law
- Okay, but not even as two power laws
- Use the estimated decline at optical or x-ray to infer the other – dotted, dashed, dash-dotted
- Nothing looks right!?
- Ignore it and carry on?
- Take a closer look at the x-ray, as photon collecting (time error bars are not uncertainties, but bin sizes)
- Re-bin critical x-ray observations!
- It dips more than expected rebrightening before declining.
- Optical still doesn't fit, but...

- Energy injection into the afterglow at ~1 day
- Optical at the same time is thermal – a kilonova!
- The optical afterglow can be inferred from the x-ray
- And subtracted from the data
- Fitting a kilonova model – although slightly lower mass, this is consistent with the kionova following GW170817

The x-ray observations of Swift-XRT (and XMM Newton) were essential in decoding the afterglow, revealing a fairly "standard" kilonova.

The x-ray traces the afterglow evolution, even when it is complicated!!!

Yes, really! Watch this...

GRB 231117A – it looks like energy injection but...

- Excellent radio, optical, and x-ray coverage
- Use the closure relations to estimate the temporal and sed behaviour – energy injection, but not as we know it
- That x-ray flare at 1-2 hours!?
- That radio excess scintillation?
- Other than the flare, the x-ray appears as a regular refreshed shock

Anderson... **GPL** et al. (in prep), see also Schroeder et al. 2025

Looking at radio... but that flare!

• Fit the model

tophat_redback_refreshed to the data
via nessai - a sophisticated, Al powered
nested sampler (with hierarchical something
or other)

- Posterior, and the sed all looks good apart from the early radio at 0.07 days
- The x-ray flare was just before this data not shown
- Could the flare and the radio excess be related?

Anderson... GPL et al. (in prep)

Never a new model... let's make a new model!

- Not actually "new"... maybe a bit new
- Take Zhang & Meszaros 2002 and apply their collision model to our parameters
- What is new?
 - Stratified velocity profile in catching shell
 - Energy injected is >> impulsive energy
- Careful to conserve mass, energy, and momentum
- Many more free parameters, too many
- Use the existing fit posterior (refreshed shock) and tag on the new model

Violent collision model without finetuning

Anderson... GPL et al. (in prep) -- this figure relegated to the appendix, Appendix B even!

Those long-engined merger GRBs

- ...or maybe not (Waxman et al. 2025) 😳
- GRB 211211A and GRB 230307A (Rastinejad... GPL et al. 2022, Levan... GPL et al. 2024)
- GRB 211211A the *Swift*-XRT wins again
- GRB 230307A was also controversial... but not as much as a z=4 GRB with that luminosity would have been!

My figure for the GRB 230307A afterglow

Not in Levan... GPL et al. 2024

Long lived engine

- Not everything as it seems
- The kilonova is difficult to reconcile
- Hamidani... **GPL** et al. 2024 show that red and blue incompatible
- And suggest a long-lived engine, or late jet that inflates a cocoon resulting in the blue component.
- So, the kilonova would just be red? Like from a NS-BH...

Early QPO – possibly evidence of a warp

• More weirdness... a QPO in the highly variable precursor. Analysis includes *Swift*-BAT data

GPL et al. 2025 arXiv:2503.15613

If it is a NS-BH merger, the QPO is likely Lense-Thirring – which for higher mass black holes with moderate spin seems to produce the expected timescales and length scales

Conclusions

- The x-, gamma-, and UV/optical observations of GRBs made by *Swift* are essential in unlocking the individual afterglow lightcurve data for most GRBs
- The BAT data compliments the data from other gamma-ray burst monitors, and gives unparallelled localisations
- GRB phenomena are complicated, but general trends persist – the details may hold the keys to unlocking their secrets
- XRT observations have been instrumental to our understanding and modelling of GRB afterglows
- LONG LIVE SWIFT the original Swifty

Taylor Swift – stolen from the internet. No grasses!