Celebrating 20 years of Swift Discoveries 24–28 Mar 2025 Florence, Italy

Interpreting the 10 MeV emission line in GRB 221009A as high-latitude emission from an annihilating pair bubble

Om Sharan Salafia

INAF – Osservatorio Astronomico di Bre INFN – Sezione di Milano-Bicocca Milan, Italy

Finanziato dall'Unione europea NextGenerationEU

background image credits: NASA's Goddard Space Flight Center Conceptual Image Lab]

GRB 221009A - The B.O.A.T.

[Swift/XRT image of the dust rings – adapted from Williams et al. 2023]

Dr Ravasio's discovery

[Adapted from Ravasio, Salafia, Oganesyan, et al. 2024]

Dr Ravasio's discovery

Fermi/GBM data of GRB 221009A SBPL SBPL+Gaussian $v F_{v}$ [erg cm⁻² s⁻¹] 01 NaI 8 SBPL NaI 4 Gaussian NaI 6 BGO 1 [290-295 s] [290-295 s] SBPL-only model SBPL+Gaussian Residuals 4 2 ار و ر ماداراناناناناناروس 0 $-2 \\ -4$ 10^{1} 10^{2} 10^{3} 10^{4} 101 10^{2} 10^{3} 10^{4} Energy [keV] Energy [keV]

[Adapted from Ravasio, Salafia, Oganesyan, et al. 2024]

How do you produce a narrow feature with $L \sim 10^{50}$ erg/s luminosity at $h\nu \sim 10$ MeV?

How do you produce a narrow feature with $L\sim 10^{50}$ erg/s luminosity at $h\nu\sim$ 10 MeV?

How do you produce a narrow feature with $L\sim 10^{50}$ erg/s luminosity at $h\nu\sim$ 10 MeV?

$$h \nu_{obs} = \delta h \nu'$$

lf

$t_{\rm em} \ll r/c$

then HLE dominates time evolution, and

$$t_{\rm em} \ll r/c$$

$$L(t_{\rm obs}) = \frac{2E/t_{\rm ang}}{(1+t_{\rm obs}/t_{\rm ang})^3}$$
$$h\nu_{\rm obs}(t_{\rm obs}) = \frac{2\Gamma h\nu'}{(1+t_{\rm obs}/t_{\rm ang})}$$

where

 $t_{\rm ang} \sim \frac{r}{\Gamma^2 c}$

e^+e^- annihilation line HLE

[Salafia et al, in prep.; see also Ravasio et al. 2024; Zhang et al. 2024; Pe'er & Zhang 2024]

e^+e^- annihilation line ${\rm HLE} \rightarrow$ parameter constraints

e^+e^- annihilation line HLE \rightarrow parameter constraints

Assuming e^+e^- annihilation

$$h\nu' = m_{\rm e}c^2$$

$$E = 2N_{\pm}m_{\rm e}c^2$$

 $t_{\rm ang} \sim rac{r}{\Gamma^2 c}$

e^+e^- annihilation line HLE \rightarrow parameter constraints

Assuming e^+e^- annihilation

$$h\nu' = m_{\rm e}c^2$$

 $E = 2N_{\pm}m_{\rm e}c^2$
 $t_{\rm ang} \sim \frac{r}{\Gamma^2 c}$

Results

$$N_{\pm} \approx 2 \times 10^{57} r_{16}$$
 (1)

$$\Gamma \approx 200 \, r_{16} \tag{2}$$

$$au_{
m T,\pm} \sim rac{\sigma_{
m T} N_{\pm}}{2\pi r^2} pprox 2 \, r_{16}^{-1} \qquad$$
 (3)

[Salafia et al., in prep]

[Salafia et al., in prep]

[Salafia et al., in prep]

[Salafia et al., in prep]

[Salafia et al., in prep]

Parameter exploration ongoing...stay tuned!

• BOAT GRB MeV line: blue-shifted e^+e^- annihilation line + HLE \longrightarrow precise constraints on pair enriched region

- BOAT GRB MeV line: blue-shifted e^+e^- annihilation line + HLE \rightarrow precise constraints on pair enriched region
- Interaction between prompt emission main event gamma rays and precursor blastwave offers self consistent explanation

- BOAT GRB MeV line: blue-shifted e^+e^- annihilation line + HLE \rightarrow precise constraints on pair enriched region
- Interaction between prompt emission main event gamma rays and precursor blastwave offers self consistent explanation
- Stay tuned for constraints on external medium, prompt emission efficiency, jet Lorentz factor

- BOAT GRB MeV line: blue-shifted e^+e^- annihilation line + HLE \rightarrow precise constraints on pair enriched region
- Interaction between prompt emission main event gamma rays and precursor blastwave offers self consistent explanation
- Stay tuned for constraints on external medium, prompt emission efficiency, jet Lorentz factor

Thank you!

Backup

[similar to Beloborodov 2002, but hot electrons and pairs]

Parameters

Why have we not seen this before

1. Emission needs be very bright

Why have we not seen this before

2. We usually do not look for this kind of feature

Search in other bright GRBs

No clear features in three next brightest Fermi/GBM GRBs. But narrow needle in a haystack.