

Measuring the expansion of GRB afterg lows

Speaker S.Giarratana

Celebrating 20 years of Swift Discoveries - 2025

with the (fundamental) help of G. Ghirlanda, M. Giroletti, O. S. Salafia, L. Nava, L. Rhodes, B. Marcote, J. K. Leung and many more...

Credits: Sergio Poppi (Inaf Cagliari)

GRBs in Radio

Emission mechanism Forward vs Reverse shocks

Time

Credits: Sergio Poppi (Inaf Cagliari)

GRBs in Radio

Geometry Viewing angle Collimation angle Size and structure

Credits: Sergio Poppi (Inaf Cagliari)

GRBs in Radio

Progenitors Circum-burst density profile

On-axis GRBs

Observer

C in

2

From Pihlström et al. (2007)

GRB 030329

First direct proof of (apparent) superluminal expansion

Off-axis GRBs

Observer

From Mooley et al. (2018)

GRB 170817A

(slightly A off-axis GRB

GRB 170817A

75d & 230d from Mooley et al. (2018)

First proof of successful jet from a BNS merger

From Ghirlanda et al. (2019)

GRB 221009A the Brightest Of All Time

GRB 221009A

Credit: NASA's Goddard Space Flight Center and Adam Goldstein (USRA)

5 arcminutes

Credit: NASA/Swift/A. Beardmore (Univ of Leicester)

Measuring the expansion

Apparent size evolution. From *Giarratana et al. (2024)*

ISM vs wind-like?*

No

jet break:

a = 0.625

Lateral spreading: $a \sim 0.7$

Wind

Post jet-break: a = 1/2

* Blandford & McKee (1976) blastwave

X

From Giarratana et al. (2024)

From Giarratana et al. (2024)

GRB 221009A

Conclusions

Conclusions

Conclusions

Backup Slides

GRB 221009A

From Hayes & Gallagher (2022)

Credit: NASA/Swift/A. Beardmore (Univ of Leicester)

Intrinsic VHE spectra corrected for EBL. From LHAASO Collaborarion (2023)

From Bright, Rhodes, ..., SG et al. (2023)

The radio emission of the BOAT

From Rhodes, ..., SG et al. (2024)

The European VLBI Network

The Very Long Baseline Array

Mauna Kec

The Long Baseline Array

VLBI campaign

Clean PI map. Array: EVN GRB22100 at 4.856 GHz 2022 Nov 21

Frequencies 5, 8, 15 GHz

Time 40 to 262 days

Afterglow Models

Top-hat jet model expanding in a wind-like environment. From Ren et al. (2023)

Two-component jet expanding in a uniform environment. From Sato et al. (2023)

Afterglow Models

Structured jet expanding in a medium with k < 4/3. From O'Connor et al. (2023)

Afterglow Models

From Laskar et al. (2023)

T - To	Freq	Array
40	8.3	EVN
43	4.8	EVN
44	15.1	VLBA
114	15.1	VLBA
117	4.8	EVN
118	8.3	EVN
205	15.1	VLBA
231	6	Global
261	4.8	EVN
262	15.1	VLBA
391	6	Global

Our VLBI campaign

From Giarratana et al. (2024)

Synchrotron spectrum for the afterglow model. From Granot & Sari (2002)

SKA and ngVLA

SKA1 Telescope Expected Performance – Imaging

Nominal frequency	110 MHz	300 MHz	770 MHz	1.4 GHz	6.7 GHz	12.5 GH
Range [GHz]	0.05-0.35	0.05-0.35	0.35-1.05	0.95-1.76	4.6-8.5	8.3-15.4
Telescope	Low	Low	Mid	Mid	Mid	Mid
FoV [arcmin]	327	120	109	60	12.5	6.7
Max. resolution [arcsec]	9.7	3.5	0.7	0.3	0.06	0.03
Max. bandwidth [MHz]	300	300	700	810	3900	2 x 2500
Cont. rms, 1hr [µJy/beam] ª	26	14	4.4	2	1.3	1.2
Line rms, 1hr [µJy/beam] ^ь	1850	800	300	140	90	85
Resolution range for cont. & line rms [arcsec] ^c	12-600	6-300	1-145	0.6-78	0.13-17	0.07-9
Channel width (uniform resolution across max. bandwidth) [kHz]	5.4	5.4	13.4	13.4	80.6	80.6
Narrowest bandwidth, zoom mode [MHz]	3.9	3.9	3.1	3.1	3.1	3.1
Finest zoom channel width [Hz]	226	226	210	210	210	210

a. Continuum sensitivity at nominal frequency, assuming fractional bandwidth of $\Delta v/v = 0.3$

b. Line sensitivity at nominal frequency, assuming fractional bandwidth per channel of $\Delta v/v = 10^{-4}$ (>10⁻⁶ will be possible]

c. The sensitivity numbers apply to the range of beam sizes listed For more details refer to the document "Anticipated SKA1 Science Performance" (SKA-TEL-SKO-0000818 available on astronomers. skatelescope.org and at arxiv.org/abs/1912.12699)

SKA info sheet from the public SKAO website.

	ngVLA Key Performance Metrics						
Parameter [units]	2.4 GHz	8 GHz	16 GHz	27 GHz	41 GHz	93 Gł	
Band Lower Frequency, <i>f</i> L [GHz]	1.2	3.4	12.3	20.5	30.5	70	
Band Upper Frequency, <i>f</i> _H [GHz]	3.5	12.3	20.5	34.0	50.5	11	
Field of View FWHM [arcmin]	24.852	7.440	3.561	2.143	1.442	0.6	
Aperture Efficiency [%]	0.828	0.936	0.941	0.920	0.886	0.6	
Effective Area, <i>A_{eff}</i> x 10 ³ [m ²]	51.41	58.15	58.42	57.10	55.03	40	
System Temp, <i>T</i> _{sys} [K]	17.07	22.00	24.40	32.42	47.41	65	
Max Inst. Bandwidth [GHz]	2.3	8.8	8.2	13.5	20.0	20	
Antenna SEFD [Jy]	232.3	264.8	292.2	397.3	602.8	11	
Resolution of Max. Baseline θ _{max} [mas]	2.97	0.89	0.43	0.26	0.17	0.0	

Naturally Weighted Sensitivity

Continuum rms, 1 hr [<i>µ</i> Jy/beam]	0.24	0.14	0.16	0.17	0.21	0.4
ngVLA exp	ecte	d pe	rforma	ance.	From	the
pl	Jolia	ngVL	_A we	bsite.		

