

Exploring Short Gamma-Ray Bursts: afterglow insights from the S-BAT4 extended sample

Celebrating 20 years of *Swift* discoveries, Firenze – 24-28/03/2025

Riccardo Brivio INAF, Osservatorio Astronomico di Brera – Merate (LC)

In collaboration with the INAF-OAB Swift team: Stefano Covino, Paolo D'Avanzo, Matteo Ferro,

Maria Grazia Bernardini, Sergio Campana, Chiara Salvaggio, Tullia Sbarrato, Boris Sbarufatti, Giampiero Tagliaferri

Introduction – Gamma-ray bursts

GAMMA-RAY BURSTS (GRBs)

 $E_{ISO} \sim 10^{50} - 10^{54}$ erg Flux: $10^{-8} - 10^{-4}$ erg/cm²/s <z> ~ 2.1

Introduction – Gamma-ray bursts

Introduction – Gamma-ray bursts

From Gehrels et al. (2002)

14

With the advent of the *Swift* satellite in 2005, the discovery of SGRB afterglows and the identification of their host galaxies made possible distance measurements and the study of their energy scales and environments.

R. Brivio – Celebrating 20 years of Swift discoveries, Firenze – 25/03/2025

With the advent of the *Swift* satellite in 2005, the discovery of SGRB afterglows and the identification of their host galaxies made possible distance measurements and the study of their energy scales and environments.

R. Brivio – Celebrating 20 years of Swift discoveries, Firenze – 25/03/2025

With the advent of the *Swift* satellite in 2005, the discovery of SGRB afterglows and the identification of their host galaxies made possible distance measurements and the study of their energy scales and environments.

Building the sample

GOAL:

Put the observed quantities in the GRBs rest frame to obtain their intrinsic properties

Building the sample

GOAL:

Put the observed quantities in the GRBs rest frame to obtain their intrinsic properties

The S-BAT4 extended sample

What can we do with the S-BAT4 sample?

What can we do with the S-BAT4 sample?

Prompt phase properties – Amati relation

Zhang et al. 2012; D'Avanzo et al. 2014

X-ray afterglow light curves

X-ray afterglow light curves

Optical-NIR afterglow light curves

S-BAT4 – BAT6 afterglow comparison

S-BAT4 – BAT6 afterglow comparison

Z

X-ray luminosity distribution broader and brighter with respect to the optical for LGRBs;

S-BAT4 – BAT6 afterglow comparison

→ X-ray E_{iso} -normalized luminosity distribution tighter with respect to optical E_{iso} -normalized.

 \checkmark X-ray E_{iso} -normalized luminosity distribution

Conclusions

- We have built a flux-limited, complete sample free of selection effects.
 51 short GRBs detected by *Swift* match our criteria, 78% of which with a redshift measurement;
- → Multi-wavelength analysis of prompt and afterglow emission will enable a characterization of the intrinsic proprties of the short GRBs and investigation of their progenitors;
- → The knowledge of the population of short GRBs will allow us to properly characterize the next SGRB-GW joint event detected during O4(?), both in the X-rays and in the optical band.

Thank you for the attention!

BACK-UP SLIDES

Gamma-ray bursts classification

Gamma-ray bursts classification

Gamma-ray bursts classification time (days from trigger) 0.1 10 (a) 🗉 **GRB 211211A**: a long gamma-ray burst with an associated kilonova? 100 (a) GRB 211211A: Swift/BAT (c) Fermi/GBM Catalog: flux density (µJy) **Duration vs. Hardness** 1.0 Normalized Counts, 15-25 keV Normalized Counts, 25-50 keV t_{90} (seconds) 10^0 10^1 10^{-2} 10^{-1} 10² 10³ Normalized Counts, 50-100 keV afterglow 0.8 Normalized Counts, 100-150 keV 200 gRBs long GRBs afterglow Normalized Counts Normalized Counts, 15 - 150 keV 5 100 $t_{90} = 51.37 \pm 0.80 \ s$ M2 short GRBs # 0.01 1 keV 10 16 (b) ---- AT2017gfo @ z=0.076 Consistent with 0.2 long GRBs ! ratio 0.0 30 magnitude δt (seconds) Hardness (b) GRB 211211A: Fermi/GBM Normalized Counts 0.0 apparent r 85 Normalized Counts, 8-900 keV B+2 U+3 W1+4 GRB 211211A M2+5 W2+6 a+1 0.1 10 10-2 10^{-1} 10² 10¹ 103

From Rastinejad et al. (2022)

time (days from trigger)

50

60

70

40

 δt (seconds)

20

30

R. Brivio – Celebrating 20 years of Swift discoveries, Firenze – 25/03/2025

t₉₀ (seconds)

Redshift distribution

Prompt parameters-L_X correlation

R. Brivio – Celebrating 20 years of Swift discoveries, Firenze – 25/03/2025

S-BAT4 extended sample – optical afterglows

2 Controls Swy of the

X-ray & optical-NIR light curves

X-ray & optical-NIR light curves classification

From Melandri et al. (2014)

Optical extinction properties

R. Brivio – Celebrating 20 years of Swift discoveries, Firenze – 25/03/2025

 \bigcirc