

Experiences and future perspectives

New challenges in Astrophysics

U. Becciani

INAF Headquarter December 2, 2015 Rome

INAF – Big Science

INAF plays a fundamental scientific role (excellence) in several areas: from *Computational Astrophysics* (theoretical modelling in cosmology and astrophysics) to *very large experiments* both ground based (i.e.: Alma, SKA, CTA, E-ELT etc.) and space (i.e.: Gaia, Euclid etc.)

The *new frontiers* in Astrophysics require HPC and DC infrastructures

HPC represents the current and future platform to obtain scientific results of fundamental relevance for all the new Astrophysics challenges.

Investments and research projects for the availability and better exploitation of the new HPC generation *must be considered in the High Priority* scale for *INAF to maintain Excellence level* in many *Key Projects*, and to allow the researchers to "arrive in time" for the new generation international projects.

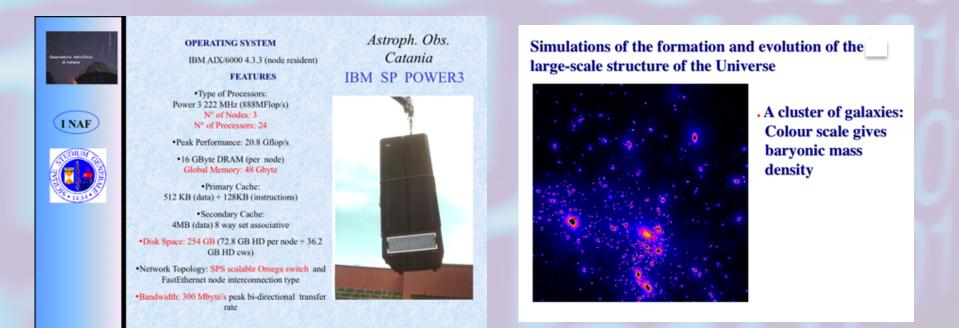
INAF – HPC in the past

INAF - CINECA specific Agreements for HPC resources

Computational Astrophysics, Visualization, Archiving and Post-Processing Data Analysis

→ 1997 - 2001
→ 2001 - 2005
→ 2005 - 2007
→ 2008 - 2010

In the last period relevant experiments have needed specific computing resources Tier-0 and Tier-1 for the analysis of experimental data also in comparison with simulated data. New generation of HPC resources for ESA PLANCK mission

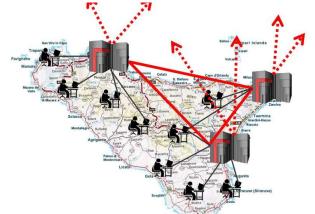

→ 2010-2012
→ 2012-2014

INAF – HPC in the past

INAF – OACatania – OAPalermo -OACagliari

- → MIUR (1999-2001) Supercomputing @ OACT
- → POR 2005-2007 TRIGRID VL @OACT
- → Cometa Consortium (PI2S2 project 2005-2009) (OACT+OAPA)
- → Cosmolab Consortium (Cybersar project 2005-2009) (OACA)

MIUR SuperComputing @ OACT



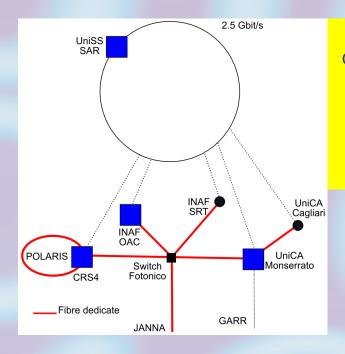
The TriGrid Project & PI2S2 Project

http://www.pi2s2.it /applications

(Some of) The Applications of TriGrid VL

- Astrophysics
 - Virtual Observatory
 - Visualizzazione 3D Visualization
 - The GAIA Mission
- Biomedicine
 - Analysis and classification of medical images (mammograms, etc.)
- High Energy Physics
 - Data analysis of CERN's Large Hadron Collider (LHC) Experiments
 - Theoretical Physics
- Engineering
- Cultural heritage
- Analysis and monitoring of environmental risks
- Technologies of production

~15.000.000€ in 3 years! ~300 FTE's ! (2/3 new hired staff)


> 120

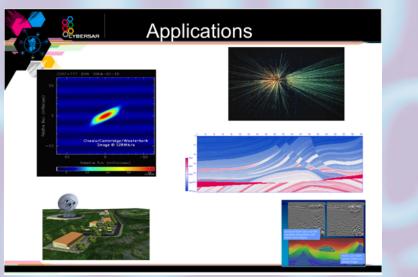
Distribution by domain			
	Chemistry Cultural Heritage Biomedicine Computer Science		3
	- Earth Sciences	Order by Domain	٣
	- Lan Solences	APPLICATION	
	Bioinformatics	COMP_FILT <	
		AstroDyn	_
		VisIVOServer <	_
	Grid Services	P-Gadget2 🧹	_
A	tion of	MultiDIRECT	
Applica	tions	ADAP 🔶	-
* *		7ELISMD -	

	ON	De la	Berry	*	
Order by Dom	nain 🚽				
APPLICAT	ION	DOMAIN			
COMP_FILT	←	Astrophysics		Details	OACT
AstroDyn	~	Astrophysics		Details	OACT
VisIVOServer	~	Astrophysics		Details	OACT
P-Gadget2	~	Astrophysics		Details	OACT
MultiDIRECT		Astrophysics		Details	
ADAP	<i>—</i>	Astrophysics		Details	UniCT
ZEUSMP	-	Astrophysics		Details	OACT
PLUTO	←	Astrophysics		Details	CAPA
ic_par	-	Astrophysics		Details	OACT
GFLASH	-	Astrophysics		Details	CAPA
HEASOFT	-	Astrophysics		Details	CAPA
GEX	-	Astrophysics		Details	OACT
FLY	-	Astrophysics		Details	OACT
JFLASH	-	Astrophysics		Details	OACT
CORSIKA	4	Astrophysics		Details	JAST-PA
ClustalW		Bioinformatics		Details	
SplitsTree		Bioinformatics		Details	
SimTrinley		Riginformatice	-	Dataile	

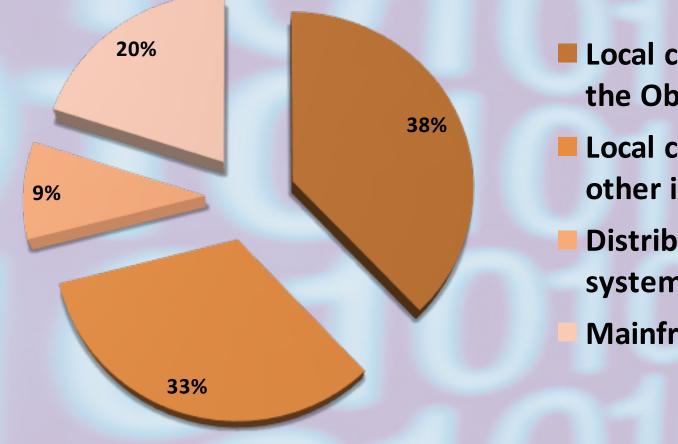
- 1. 1500+ cores AMD Opteron IBM Blade
- 2. 250 TB of memory
- 3. LSF 6.1 HPC everywhere
- 4. Infiniband-1X for HPC apps.

Cybersar Project

– 4 main sites


Optical link (cold)- λ -Grid

- Optical Switching
- Bandwidth Unlimited Computing
- Application Programmable Computing Resources



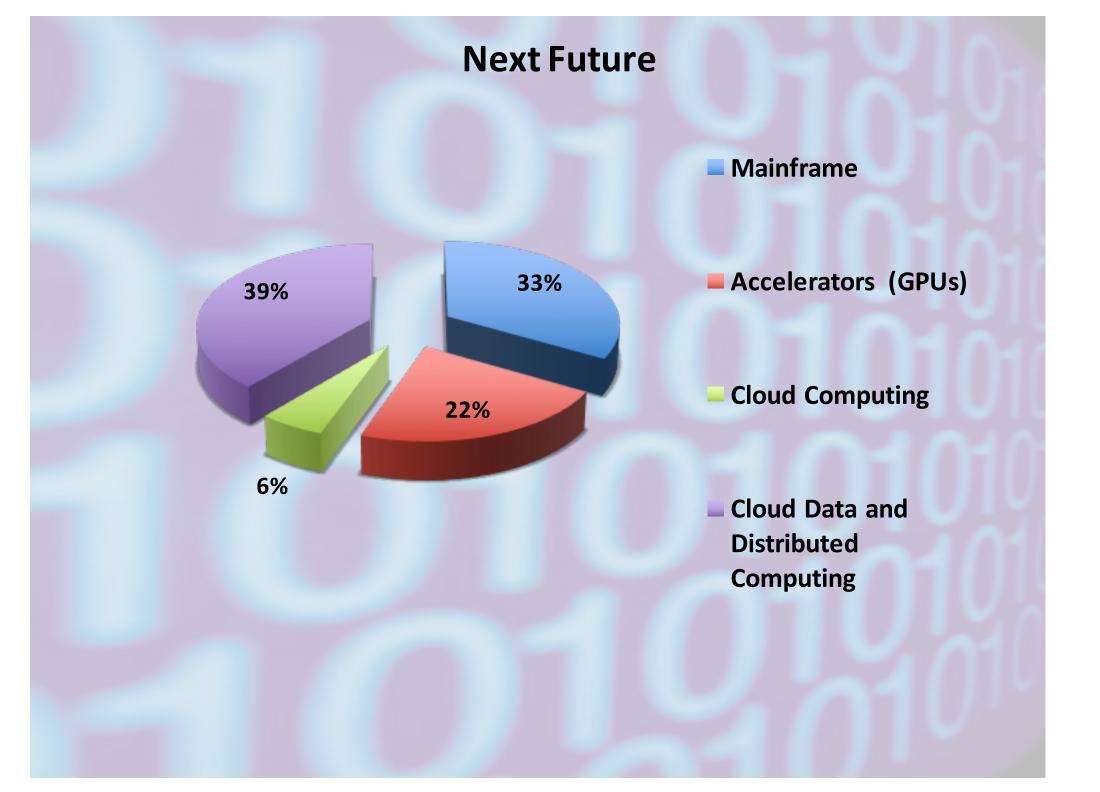
	U-CA	CRS4	OAC	Tot
Cpu cores+	408	312	288	1,008
RAM (TB)	0.8	0.8	0.6	2.2
Disk (TB)	70	80	45	195

+ AMD dual opteron 28x cpus •InfiniBand 4xDDR

INAF HPC - Today

 Local cluster in the Observatory
 Local cluster on other institutions
 Distributed systems
 Mainframe

Funding Agencies


Self founding

- INAF Research programs
- ASI –
- Other Institutioni (Universities, CNR, etc)
 MIUR
- EU

International Collaborations

Strength and Weakness

Good competence to obtain funds (86%) Only 12% are from EU and 41% from INAF directly

Others Considerations

- Researchers involved in HPC activities
 - About 70 researchers (permanent & not-permanent)
- Number of peer reviewed publications using HPC resources in the last three years → 143

- Conference reports (last three years) → 129

The Resources

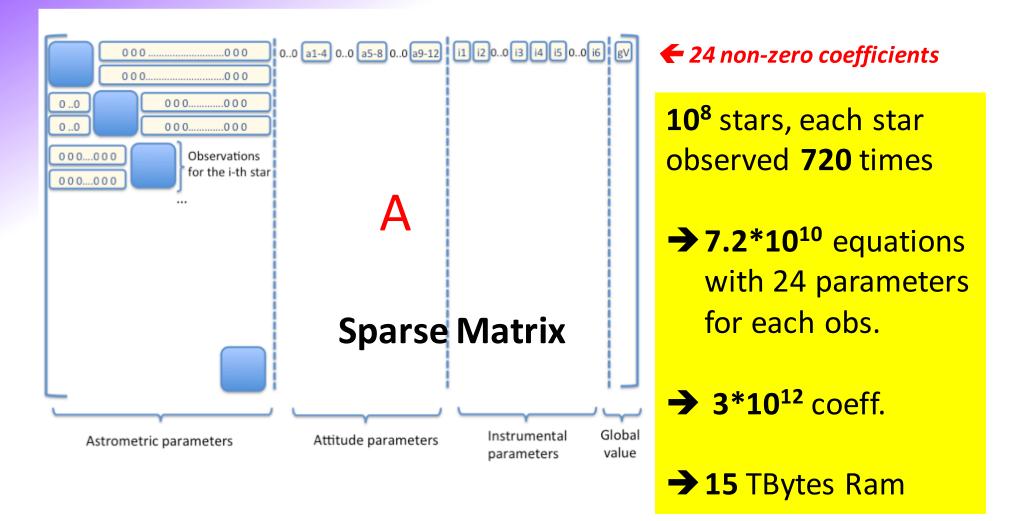
- Used CPU/core hours in the last three years
- 🗲 255 Millions, globally 68% Cluster (PLX) and IBM BGQ Cineca
 - MPI **→** 55%
 - MPI+OMP **→** 45%
- CPU/core hours and storage requested for the next three years
 550 Millions and 710 TB disk space

- Requested support
 - → 65% of the programs requires porting to use the new HPC generation based on accelerators (GPUs)

Esa Gaia Mission A Stereoscopic Census of our Galaxy

Infrastructure MoU INAF Cineca 2013 - 2021

Cineca will support INAF - AVU GSR Solver Module, searching a solution for **100** Million Star


Architecture: 10 BGQ Frames Processor Type: IBM PowerA2, 1.6 GHz Computing Cores: 163840 **Computing Nodes: 10240 RAM: 1GByte / core** Disk Space: 2.6 PByte of scratch space Peak Performance: 2PFlop/s

FERMI IBM BlueGeneQ

The Global Problem

For each observation, the Total Matrix stores the astrometric, attitude, instrumental parameters and a Global Value coefficient

Each observation has: **5** astrometric coeff., **12** attitude coeff. (4x3 *equally spaced blocks*), **6** instrumental coeff., **1** relativistic gamma coeff.

European Exascale System Interconnect & Storage (ExaNeSt) INAF - OATS

- European Funded project (H2020-FETHPC-1-2014) 7M Euros
- **Coordinated by Foundation for Research & Technology Hellas**
- Develop an European low-power high-performance exascale infrastructure based on ARM-based micro servers.
- System architecture for datacentric Exascale-class HPC
 - Fast, distributed in-node non-volatile-memory
 - **Storage** Low-latency *unified* **Interconnect** (compute & storage traffic)
- Extreme compute-power density
 - Advanced *totally-liquid* Cooling technology (ICETOPE)
 - Scalable packaging for 64-bit ARM-based Microservers
- Real scientific and data-center applications
 - Applications used to identify system requirements
 - Tuned versions will evaluate our solutions

Conclusion

- INAF have High Competence to obtain grants for HPC resources... but these are not enough for our needs
- New challenges and international projects will require HPC infrastructures
- Some projects already have these needs: Gaia, Euclid, CTA etc. (we need a stable support for these projects)
- INAF is evaluating to sign a new agreement with Cineca to obtain support and computational resources for the new generation HPC infrastructures.

 New H2020 project will allow us to create new competence on the HPC innovative field.