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L’INAF, as R&D alone and with all R&D institutes of MIUR, is involved in the
development of the e-infrastructure need for scientific research:

 Network

 HPC/HTC

 Big Data

All these point are strategic to allowing the INAF researchers to be involved on
the future challenges like:

 GAIA

 CTA

 Euclid

 SKA

 ….

H2020 Projects: INDIGO, ASTERICS, EGI



GARR is our backbone

Network:

All infrastructures are connected 
mainly with 

 1 G ( less 150 Mb )
Backbone 10G



 HPC
 9/18 center are working with HPC
 159 +70 Billion hours @ BGQ Cineca (2013)
 16 research program (70 people)
 2.7 PB of data.

 HTC
 DHTCS project (Cloud under development)
 Cluster @ PON (Catania, Palermo, Cagliari (2010))

 Local Cluster :
 ~20 “group” cluster

Computing:

Open issues:
Developing a INAF facility (Tier-2)

Test
Development
Fast “answer”(qsub ORA)

 cluster INAF…allocate local resources



 All INAF structures have archives
 About 54 archives (some under development)

 59% public, 
 Policy INAF: dati raw are public after 1 year

 Centro Italiano Archivi Astronomici (IA2)

 GAIA (on-fly)  DPAC Center (1 of 6) @ OATorino
 1 PB (mainly part of the  DBMS, Oracle partnership)

 Euclid  > 10 x GAIA (2020)
 CTA (ASTRI)  > 10 TB/giorno
 SKA  > 100 TB/giorno

Data Archive:

Data Curation & Preservation
Standard FITS (from 1970)

Data Interoprability  Virtual Observatory 
(from 2001)

IVOA – Inernational Virtual Observatory 
Alliance







Cosmological Simulations:
Some example result

106 – 1010 calculus
elements (particles)



Algorithms

• GRAVITY – long-range, all-to-all calculus elements communication
needed (in principle)

• HYDRODYNAMICS – short-range, but a small number of calculus
elements needs many time steps

• ASTROPHYSICAL PROCESSES – (radiative cooling, stqar formaton, 
black holes evolution, energy exchanges between BH/stars and gas) 
partially subgrid: the exchange part needs communications

• CODE used by our group: GADGET3 (V. Springel, K. Dolag et al). 
• Our group has access to the international repository, and is among

the code developers
• Our group often was a beta-tester for supercomputers installed at

CINECA, since 2003



HPC computing time

• Most of our CPU time obtained with competitive
grants at CINECA (INAF-CINECA convention, ISCRA)
and CASPUR

• Two PRACE projects with local PI (developement)

• Involved in several Class-A PRACE projects

• A DECI project under review



Portability, scalability…

• «Trieste» group’s simulations run on several machines: 
– Linux clusters (from Beowulf with a 10Mb network to bgp, raijin..)
– Intel SP3-7
– Server many-cores shared memory
– SuperMUC, MareNostrum, Raijin, USC…
– Plx, Eurora (but: no GPU)
– …we got troubles with Fermi On massively parallel architectures

we need extreme work-loar
balance! Our kind of problem not
Very well suited.

(not only us:
Eris run on 512 SP6 cores for 9 
months)



Code parallelization

A tree is used for gravity computation
(approximate, but less communications)

DOMAIN DECOMPOSITION using a Peano
space-filling curve: work-load balance at the
cost of memory unbalance

Computation assigned at single MPI tasks.
Inside them, OpenMP for shared memory
parallelization



Problems with the current
HPC computers generation

• Work-load balance scheme costly in terms of memory: 
a FEW MPI tasks allowed for each computing node.

• Inside node, OpenMP parallelization not so efficientNel
nodo la parallelizzazione e’ fatta con OPENMP: poc

• I/O can be extremely costly on BlueGene type
computers

• In single object/high resolution calculations, our
problem is intrinsecally unbalanced: a few particles
always active (maybe less particles than cores!)



Possible optimizations

• De-syncronization of all possible calculations, via algorithm
analysis, atomic task and dependance identification, and the 
use of a client-server kind of scheduler

Scheduler:
Assign

atomic tasks
Evaluate

dependancie
s

GRAVITY’

HYDRODYNAMICS

ASTROPHYSICS AND I/O
This requires structural rewriting of our
code or at least some of its parts:we need
a software expert…



Accelerators

• Historical problem with accelerators: they are effective when
flop/byte is high

• ...in our case flop/byte is embarassingly low: in increasing
order, gravity, hydrodynamics, astrophysics

• Simpler solution: bring astrophysics (and/or hydro?) on
accelerator and de-syncronize it

• Problem: very good syncronization needed between
accelerator and CPU calculations

• However, at least partially, a scheme as that described above
has to be implemented



Hardware solutions

• In the past: GRAPE. Board designed to calculate gravitational
interactions. Not extremely successfull.

• Accelerators: only solution (?), increase bandwidth between
CPU and accelerators (or between accelerators).

• The ideal supercomputers for our kind of calculation remains
ortogonal to the currend direction of HPC developement: few
CPUs, with a lot of RAM, very powerful

• En passant, other scientific communities have similar needs
(climatology, turbulence…)



Conclusions: possible
collaborations

• «Trieste» group would benefit from a high-level
training programme in which one person could deal
with code optimization on specific architectures

• Our experience as hardware and software tester can
be exploited

• Scientific visualization.





The Euclid Mission







Key Challenges

• Federation of 8 Europea n + 1 US SDCs (Science Data Centers) +
SOC (Science Operation Center)

• Heavy simulations needed before the mission

• Heavy (re)processing needed from raw data to science products
(volume multiplied by dozens),

• Large amount of external data needed (ground based observa tions)

• Amount of data tha t the mission will generate per ful l release
+ 26 PBytes of data (including externa l data) = > " '175 PB gra nd tota l
+ 1.1010 objects
+ => not achievable with classica I architecture

• accuracy and quality contrai required at each step



Architecture key concepts

• No Dedicated Processin g SDC: Any pipeline should run on any SDC (with
some exceptions, e.g. Level 1, EXT ingestion, LE3)

• D is t r i b ut e d Data and Processin g
• Each SDC is both a processing and a storage « node »

• Move t h e code, no t t h e data
• Run the pipeline where the ma in input data is stored

• Separat i on of metada ta (inventory) from data (stora ge)

• Kind of home made "Map/Reduce"
• Lower level of processing on QoD (minima l processa ble set of data covering

a given sky area), constituting cata logs of objects
• Higher level of processing based on data cross-matching/correlation: need to

colocate reduced set of data (whole catalog)



Conclusions

• Big challenge !

• Al ready active worki ng groups on :
+ Architecture principles
+ POC Mock-up & cha llenges

• Worki ng prototypes = > pillars of the SGS

• Next steps
• Refine the architecture model according to the scientific

processing requirements (granularity, triggering, volumes, ...)
• Identify candidates implementa tions
• Interleave scientific & architectural challenges





Data rates and Storage: SKA



SKA project

• Dishes
• Depends on feeds, but illustrate by 2 

GHz bandwidth at 8-bits 

• 64 Gb/s from each dish

• For Phased Array feeds increased by 
number of beams (~20)

• ~ 1 Tb/s

• For Low frequency Aperture Arrays :
• Bandwidth is 380 MHz
• – 240 Gb/s

• These are from each collector into the 
correlator or beam former

• 2700 dishes
• – ~ 600 Tb/s



SKA computational requirements

• SKA correlator in case of Pulsar search (PPS):

• data rate of the pulsar search engine is expected to reach 
0.6TeraSamples/sec (1sample = 4*8 bit)

• SKA Pulsar Search input is approximately 1PetaBytes on each cycle of 
observation which lasts up to 600s

• It is expected to observe in pulsar surveys for 1 day → 144 PB of raw 
data

• No possibility to handle with this amount: from 1 PB raw → some 
hundreds MB of correlated data for each cycle → 14 TB/day

• Particular case of massive objects:pipeline performances required → 10 
PetaOps/s for acceleration process
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