The transient sky in the era of multimessenger astronomy

G. Valerin & I. Salmaso on behalf of the Padova SN group

SN 2023ixf Asiago Schmidt telescope Courtesy of A. Reguitti

Enrico Cappellaro Laura Greggio Stefano Benetti

Andrea Reguitti Giorgio Valerin Irene Salmaso

POST-DOC

STAFF

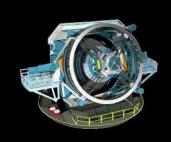
Francesco Guidolin

Science Interests

- Telassification program
- 🗲 SNe lax
- ₩ Faint Core-collapse SNe
- Progenitor study
- 100 Rates
- 💫 Gap Transients
- Interacting SNe
- 📡 Radio Transients
- 💬 Multimessenger Astronomy

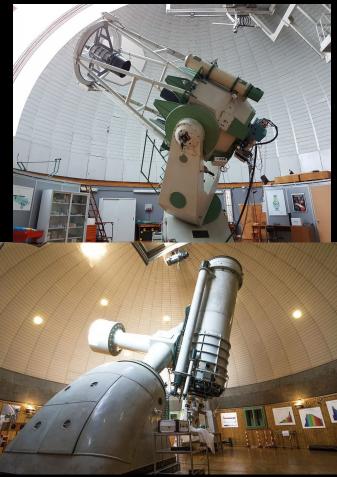
Andrea Pastorello Lina Tomasella Nancy Elias-Rosa

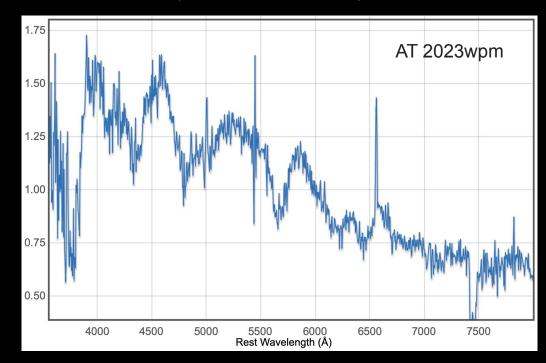
Padova-Asiago Supernova Group


Science Interests

- 🔭 Asiago classification program
- Peculiar thermonuclear SNe
- ₩ Faint Core-collapse SNe
- Archival search and progenitor study
- 💫 Gap Transients (ILRTs, LRNe, LBVs)
- Interacting SNe
- 📡 Radio Transients
- Multimessenger Astronomy (GW, neutrinos)

Collaborations and future projects


- NUTS2, ePESSTO+
- ThunderKAT
- ENGRAVE, GRAWITA
- Einstein Telescope
- LGWA
- EUCLID
- LSST
- SOXS



Transient classification program

Program started in 2013 (Tomasella et al. 2014)

https://sngroup.oapd.inaf.it/asiago_class.html

Transient classification program

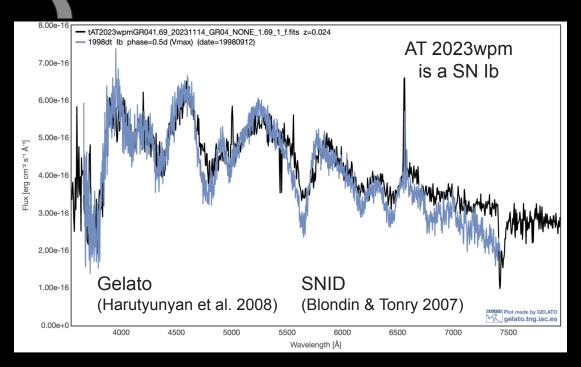
■ AstroNote 2023-308

Stats

AstroNotes

ATel & Astronotes

2023-11-15 09:04:12 Type: Object/s-Discovery/Classification Bibcode: 2023TNSAN.308....1T Asiago spectroscopic classification of optical transient


Authors: Stefan Taubenberger, Christian Vogl, Simon Huber, Stefan Schuldt, Jana Grupa, Allan Schweinfurth (MPA), Lina Tomasella, Stefano Benetti, Enrico Cappellaro, Andrea Pastorello, Irene Salmaso, Andrea Reguitti (INAF OAPd)

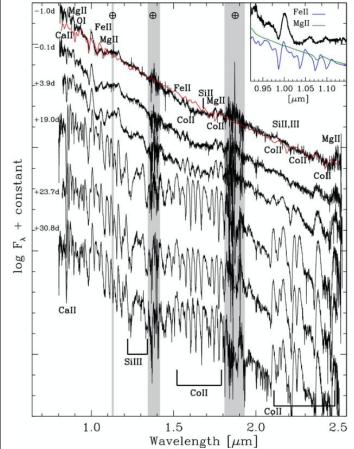
Source Group: Padova-Asiago

Keywords: Supernova, Spectroscopy, Optical

Abstract: The Asiago Transient Classification Program (Tomasella et al. 2014, AN, 335, 841) reports the spectroscopic observation of AT2023wpm (ZTF23abovaur) in LEDA 1656929

- ~650 classified transients in 10 yrs
- Up to ~38% of newly discovered SNe classified from Asiago in the first years
- Second wind with RoboCop?

https://sngroup.oapd.inaf.it/asiago_class.html

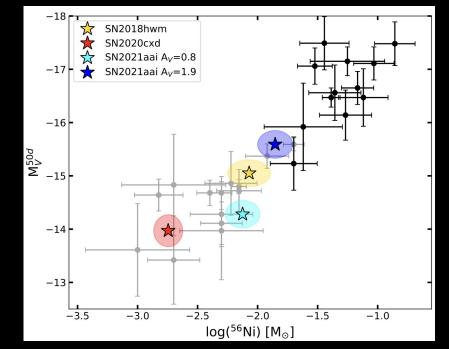

Thermonuclear SNe Iax

 Low luminosity (-19 mag < M_V < -13 mag), fast rise to maximum light (~10 to 20 days)

• Low velocity ejecta (~2000-6000 km/s)

 C/O WD + He-star good progenitor candidates (but diversity within the class: multiple progenitors/explosion mechanism?)

https://sngroup.oapd.inaf.it/faint.html


Tomasella et al. 2016

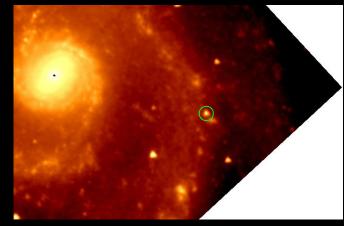
Faint core-collapse SNe

The most common core-collapse outcome is a SN IIP or IIL, but there is a variability within the class

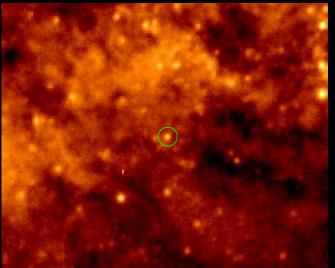
- -18 mag < M_V < -13 mag
- $10^{-3} \text{ M}_{\odot} < \text{M}(^{56}\text{Ni}) < 10^{-1} \text{ M}_{\odot}$
- $10^{50} \text{ erg} < \text{E}_{kin} < \text{few } 10^{51} \text{ erg}$

Correlations between parameters suggest that such variability is linked to the mass of the progenitor star

Valerin et al. 2022

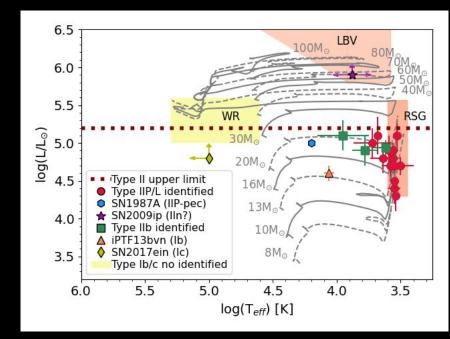

Archival searches:
Progenitors and their
variability

Search science archives for pre-explosion images


Both in the Optical (HST, CFHT, DES, ESO, NOAO...) And in the MIR (JWST, Spitzer, WISE) AT 2019abn detected by JWST/MIRI

Progenitor of AT 2021biy in CFHT data, Cai et al. 2022a

Spitzer image of AT 2019abn in M51

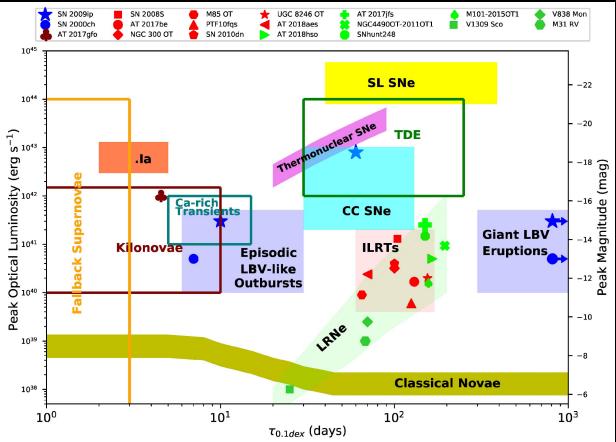

https://sngroup.oapd.inaf.it/progenitors.html

Fate of massive stars

Constraints on the progenitors of CC-SNe

Connect the SN explosion with the stellar evolution

- Why are we not detecting massive (>17 $\rm M_{\odot})$ red-supergiants SN progenitors?
- Which is the fraction of stripped envelope SNe in binary systems?
- Which are the most massive stars that end their life as a SN?



NER: PI of observational programmes for the hunt of SN progenitors

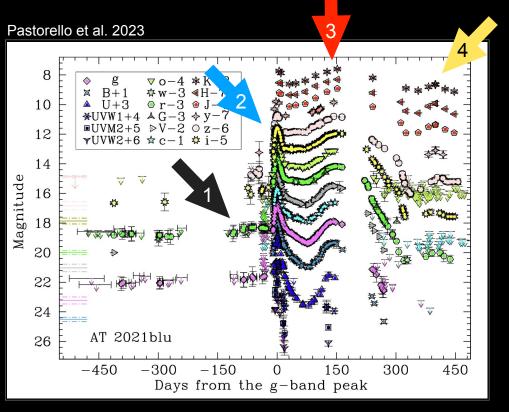
https://sngroup.oapd.inaf.it/progenitors.html

Cai et al. 2022

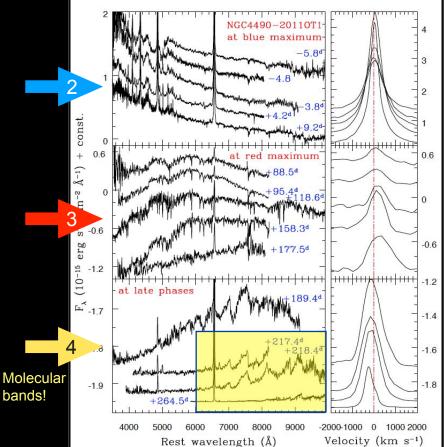
Luminous Red Novae (LRNe)

Intermediate Luminosity Red Transients (ILRTs)

Outbursts of massive stars

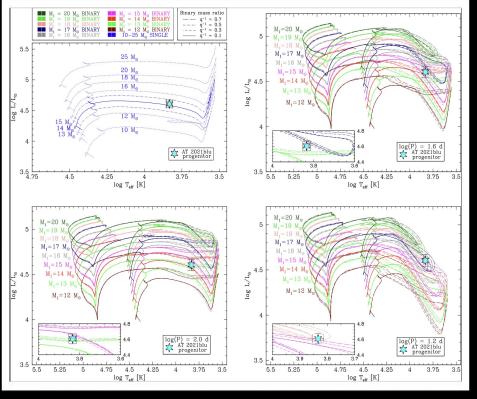

Giant LBV eruptions (Eta-Car like)

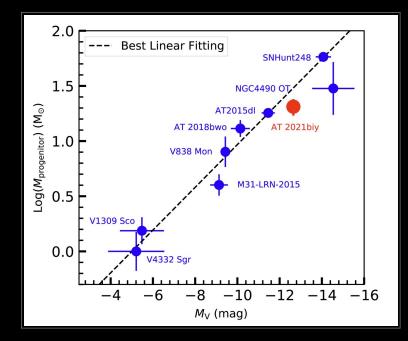
Tightly linked to ejecta-CSM interacting SNe (Type IIn, Ibn)


http://graspa.oapd.inaf.it/gap.html

💫 Luminous Red Novae

Pastorello et al. 2019a

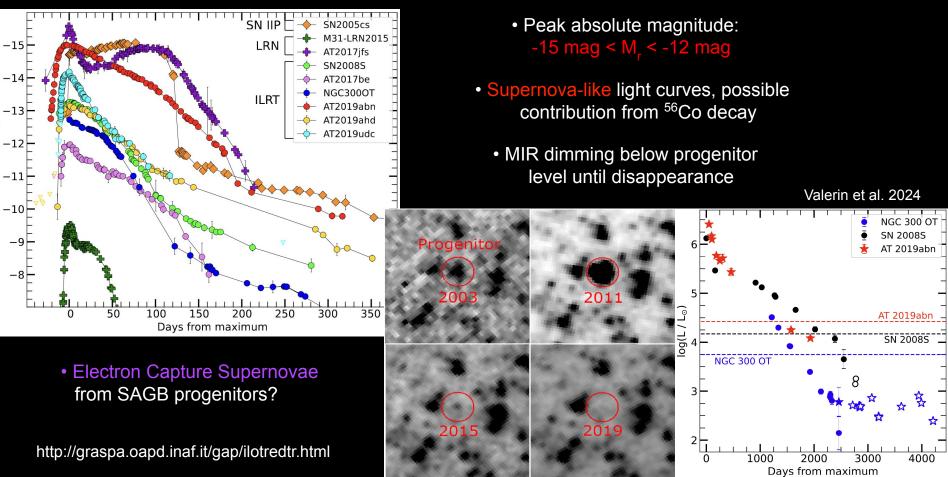

http://graspa.oapd.inaf.it/gap/lrn.html



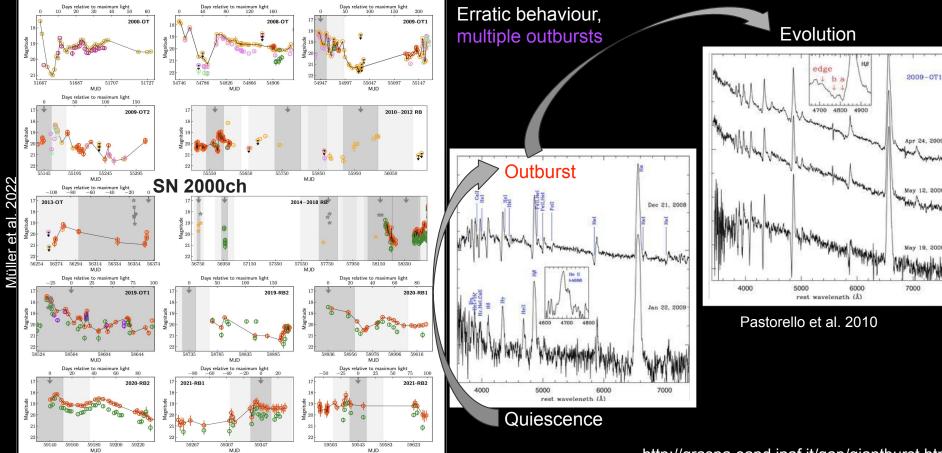
Quiescent progenitor detection

Indirect methods:

The luminosity and the duration of the outburst depends on the masses involved


Pastorello et al. 2023

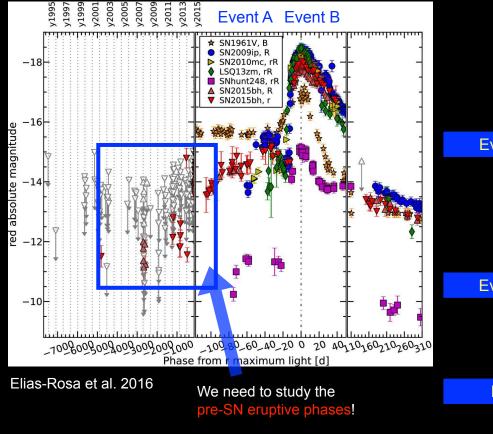
http://graspa.oapd.inaf.it/gap/lrn.html


Cai et al. 2022

·

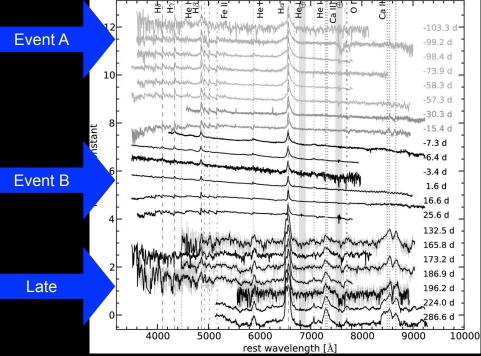
Transients

LBV outbursts and giant eruptions



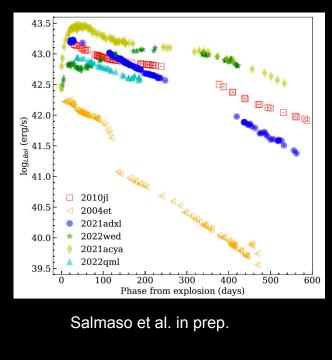
http://graspa.oapd.inaf.it/gap/giantburst.html

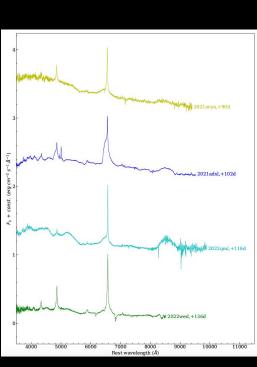
24, 2009


MARKIN

💫 Gap transients can become SNe

Pre-SN IIn outbursts: SN 2009ip-like transients


Erupting LBVs or lower mass stars in binaries?



http://graspa.oapd.inaf.it/gap/giantburst.html

🔶 Interacting Supernovae

- SNe whose ejecta interact with CSM
- Spectra and light curve heavily depend on CSM properties
- Efficient conversion of E, into radiation -> brighter and longer light curve, slower spectral evolution
- CSM gives insights on the last evolutionary stages of massive stars
- Shock can accelerate particles and produce high energy neutrinos

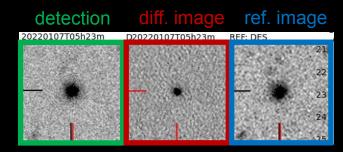
https://sngroup.oapd.inaf.it/interacting_SNe.html

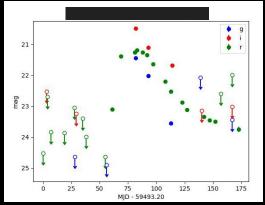
Counterpart of radio transients

Today's objective:

Unveiling hidden SN population

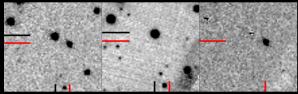
Apparent mismatch between the measured CC-SNe rate (mostly from optical observations)


and

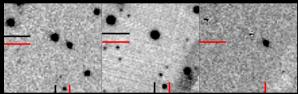

the cosmic massive star formation rate

Tomorrow's objective:

Correlate optical and radio transient properties

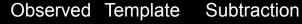

NER, EC, IS, SB, LT participate in this research and are members of ThunderKAT (SARAO/MeerKAT)

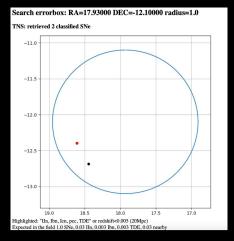
EC developed the transient search tool


From multiwavelength to multimessenger

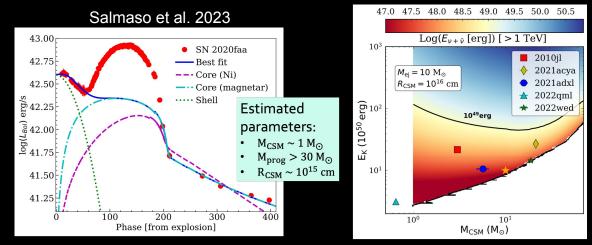
Same template subtraction strategy for neutrinos and GWs: look for unknown transients inside the errorbox

Observed Template Subtraction


From multiwavelength to multimessenger



Same template subtraction strategy for neutrinos and GWs: look for unknown transients inside the errorbox


At the same time...

Salmaso et al. in prep.

Search for classified transients

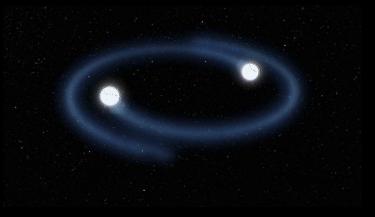
Study of potential emitters


Collaborations

ePESSTO+

- 30+ members from Europe
- Padova node alone contains 30% of the members
- Access to NOT telescope through members from Scandinavia
- 65 hours/semester of soft ToO (ALFOSC) + 6 half-nights/semester (NOTCam)
- 30+ papers until 2021

- •Started 2012, still on-going (due to delays with SOXS)
- •Granted 90 nights/semester at ESO 3.58m NTT telescope + EFOSC2 (and SOFI until last August)
- •100+ papers until 2020



Collaborations

• Follow-up of EM sources from GWs, mostly with ESO facilities (VLT)

- ~100 members from the Italian community (PI E. Brocato, INAF-OAAb)
- Search and follow-up of electromagnetic counterparts of GWs events and GRBs
- Recent paper on Nature on a Gamma-ray flash from M82, using data from INAF facilities (Asiago and Campo Imperatore Schmidts + TNG)

http://www.engrave-eso.org/

https://grawita.inaf.it/

Gravitational Wave Astronomy

<u>TODAY</u>

Ligo/Virgo/Kagra (LVK)

Search for counterpart in O4 run

Founder members of the Italian (GRAWITA) and European (ENGRAVE) collaborations

EC: in the board of GRAWITA

All: Alert team, contribution to the search (VST, Schmidts) and follow-up (VLT, LBT, TNG, Asiago) of WGs

https://www.ligo.org/ https://www.virgo-gw.eu/

TOMORROW

ΕT

Einstein Telescope (ET)

Contribution to Blue Book

NER, EC: chapter *Stellar collapse and rotating neutron stars* (DIV7 of OSB)

EC: Col of the PNRR ETIC

Laboratorio ADONI: Test di ottica adattiva per ET

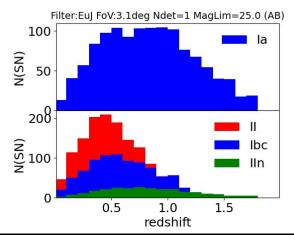
EC: PI of INAF as co-proponent

https://www.einstein-telescope.it/

Long term vision: LGWA

LGWA is a mission concept to measure the vibrations of the Moon caused by GWs. Observation band 1mHz to a Hz (peak sensitivity in the decihertz band). Its pathfinder mission Soundcheck was selected in 2023 by ESA into the Reserve Pool of Science Activities for the Moon.

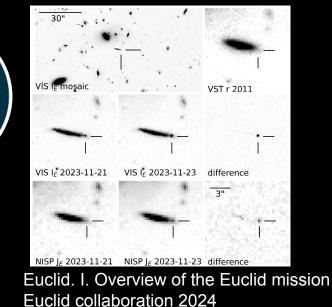
SB: member of LGWA Steering Group


SB, EC, LT: co-authors of LGWA White Paper (https://arxiv.org/abs/2404.09181) and member of LGWA WG1 (GW Science and Multi-Messenger Astronomy)

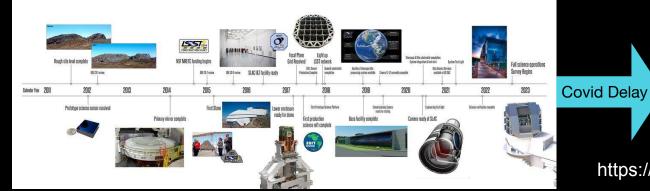
http://lgwa.unicam.it/

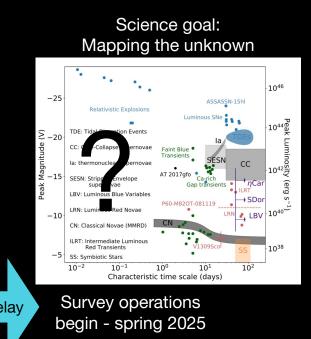
Search for Transients in EUCLID Deep and Self-Calibration fields

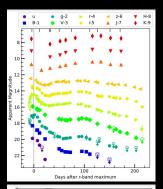
eesa

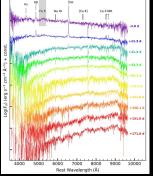

euclid

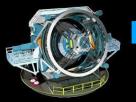
- Unique access to redshift range 1-2
- Unique very deep NIR
- Extraordinary VIS spatial sampling
- Opportunity of coordination with LSST
- As transient SWG we were granted immediate access to EUCLID images


EC developed:


- A simulation to estimate transient counts
- A pipeline for EUCLID raw data quick reduction
- The transient search pipeline


VRO/LSST Transient and Variable Stars Collaboration


- 1 approved project with data right holders (AP, LT, AR, IS, GV) on the study of peculiar supernovae, Gap Transients, "dark" supernovae. Current involvement in LSST DP0.2.
- Other PIships to be negotiated via in-kind contributions (SOXS, VST) - SB, NER, LT (classifications and additional follow-up resources)



https://www.lsst.org/

VRO/LSST alerts

LSST preparatory phase

Pagina introduttiva: http://sngroup.oapd.inaf.it/ilot.html

	ASASSN 150
	AT2017be
Attualmente 50 oggetti	AT2017/08
	A12017/080
inclusi di varie classi, dalla	CGW
	HFF145pp-NW
letteratura o non ancora	HEF 14500-SE
1111	LMC-R71
pubblicati.	LSQ13zm
Altri 40 oggetti individuati,	M101-20150T1
	MS1.J BN2015
con curve di luce e spettri	Matery
	M85-20060T1
sotto analisi. Altri saranno	NGC2M3A-V1
aggiunti non annona	NGC2403-V37
aggiunti non appena	NGC2748-201507
scoperti.	NGC3437-201107
scoperen	NGC4490-201107
A	NGC4656-200507
A	NGC55-2014OT1
	NGC5806-201407
	NGC6609-201107
	OGLE-2002-BLG-3
	PTF10fqs
	SNhunt275
	UGC 12307-2013C
	UGC2773-200901
	V1309Goo

ia)	Miley Way	22.54.05.373	+58.15.02.02	13.64	2015/10/03	Y90	EXen/FUer	11055	1.44
	NGC 2537	08.13.13.580	+45:59:29.54	18.5	2017/01/06	ILRT	Sp	\$235	- 14
	UGC 09113	14:14:17.08	+35/25:43.47	19.28 i	2017/04/482	Impostor?	\$?	\$415	- 14
	UGC 10213	16:07:23.710	+10.25:40.19	20.581	2017/04/20	Impostor	\$7	10215	- 14
	Miky Way	19.47:38.0	+27:18.48.0	37	1670/06/20	LPNNova	\$2	10035	
NW	anonymous	D4 16:09 256	-24.04.11.78	29.30	2014/01/07	ImpostonLRN	Mo	1 10/10	-
SE	anonymous	04.16.09.360	-24.04.12.87	27.98	2014/08/28	ImpostonLRN	Mo	\$255	-
	LMC	05:02:07:394	-71:20:13.12		2012/04/02	LBV	S Dor	\$235	- 14
	SDSS J102654.56+195254.8	10:26:54:501	+19.52.54.91	17.2	2013/04/13	Impostor?+SN	M7+8r2	adas	
071	M 101	14.02.16.78	+54:26:20.5	16.5	2015/01/20	LRN	52	\$255	- 14
015	M 31	00.42.07.99	+40.55-01.1	19.0	2015/01/13	LRN	52	8488	. 14
	M 01	00.43.02.433	+41:12:56.17	14.91	1966/03/00	LIN	\$2	\$235	vi
171	NGC 4382	12:25:23.80	+18:10.56.0	14.0	2006/01/07	ILRT, BLRN	Sp	adaa	vie
W1	NGC 2366	07:28:43.37	+09.11.23.95	17.88	1996/01/08	Impostor	8	sciss	-
187	NGC 2403	07:37:01.83	+65:34:29.3	19.0	1916/02/03	Impostor	S Dor / Mb	\$035	-
015OT1	NGC 2748	09.13:27.50	+76/27.41.0	18.3	2015/02/10	Impostor	S1	\$235	-
0110T1	NGC 3437	10.52.34.53	+22.56.05.2	18.4	2011/01/10	BLRN	52	1000	vie
0110T1	NGC 4490	12:30:41.84	+41:37:40.7	16.0	2011/08/16	BLRN	52	11000	-
1005071	NGC 4656	12.43.45.84	+32:00.15.0	18.5	2005/03/19	Impostor	\$1d?	\$235	-
14OT1	NGC 55	00.15.08.75	-39.12.50.1	16.7	2014/10/06	ImpostonNova	S1/Fe nova	sciss	-
014OT1	NGC 5806	14.59.59.47	+01:54:26.6	20.3	2014/05/21	BLRN	\$2/53	sciss	- 14
0110T1	NGC 6509	17:59:22.905	+06.17.26.56	18.5	2011/06/24	ILRT:	Std	\$255	- 14
BLG-360	Miley Way	17:57:38.97	-29.46.04.8	15.921	2002/10/09	LRN	\$2/53	\$235	- 14
	M 90	12.18.50.16	+14:26:30.2	20.1	2010/03/16	ILR7/BLRN	Sp	2025	- 14
	NGC 2770	09:09:35.12	+33:07:21.3	19.9	2015/02/07	SNIn	Mo+IIn2	1011	vi
2013OT1	UGC 12307	23.01:11.53	+12.43.21.8	18.3	2013/06/08	BURN	\$2	adas	- 14
1100000	UGC 2773	03:32:07:24	+47:47:39.6	17.6	2009/08/18	Impostor	8	sciss	-
	Miley Way	17.57.32.94	-30.43.10.0	9.5	2006/03/02	LRN	82	\$055	- 14
	Miley Way	18:50:38.74	-21:23:28.8	8.9	1994/02/24	LRN	82	\$255	. 14
	SDSS J160200.05+211442.3	16:02:00.12	+21:14:41.4	18	2015/02/01	Impostor+SN	S?+IIrM	12215	- 14

LSST rare transient discoveries

Templates of rare transients

Alert Pro	duction identifies time-vary	ing objects.	ST
from LSST	Floothal Trengele Inages	Data Release Database Passagra - Fisha Dasagra	to community
NEW	RF 5% Products - Products -	Aler Database so mini-broker	A brokers

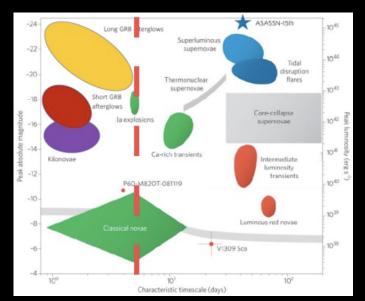
V43325gr

Showin	Showing results 0-138									
obje	ictid	ratioan	decimean	mjdmin	rridmax	magrimin	latestrmag	sherlock_classification	SCOTE	
2TF1	18ebrichro	355.0482180960966	24.400049583333337	68346.349641200165	58437,216902800208	None	None	NT	Not Near PS1 star	
2761	labuqkfp	43.68501786666667	47.442790201111114	58367425763899926	58462.270393500105	None	None	NT	Not Near PS1 star	
ZTF1	17aaarqox	327.0434185123239	47.80975476401408	58280.455844900105	58457.16057869978	18.2591	18.4422	NT	Not Near PS1 star	
21151	lactorge	9.8029147599999999	-5.2007028	58423.24353010021	58456.185011600144	10.0015	18.43	NT	Not Near PS1 star	
2111	18abrrjuye	75.32455640701765	46.86420921754386	58342.49126160006	58464.20005039987	18.6955	18.8811	NT	Not Near PS1 star	
2761	Baccreyu	142.02420130560565	16.343655773333334	58425.498124999925	58461.5225463002	10.9433	17.7337	NT	Not Near PS1 star	
21191	18abuhyiy	39.06520179047679	-1.1996821190476192	58372.48464119993	58456.25726850005	17.2808	18.7595	NT	Not Near PS1 star	
2761	Babugmrg	351.505418772	38.14633296800001	58370.30142359994	58456.15363429999	17.3337	17.6203	NT	Not Near PS1 star	
2171	18ebtswijk	38.29801417427407	-1.3056561407407405	58369.47621530015	58402.274513809814	17.4162	17.5588	NT	Not Near PS1 star	
2761	1 Rook lpda	177.45079423959526	25.650587876190478	58276-19857640306	\$8450.51827549981	17.4824	17.0924	NT	Not Near PS1 star	
2171	15oeesges	124.86382430833332	22.6387849996969696	58372.51599029985	58455.456747025925	17.5226	18.6124	NT	Not Near PS1 star	
2761	18acrulepd	84,85494625555556	-6.1502679866866687	58450.39837960014	58492.35304399999	17.5524	17.5524	NT	Not Near PS1 star	
2171	18abreefr	346.8452078	43.60320094705882	58358.40563660022	5840 					
2TF1	18abvtcpk	45.449476881818185	18.569137145454543	68374.4366393999	6844	ea				
2171	18eb/pite	349.64964474	41.13330549	58428.178391200025	5540					
2TF1	18acauwik	350.81395819	35.621342229699695	58423.22281249985	6841	Lasair				
ZTF1	15ecennet	142.98697635714285	67.6147391	55434.465104120946	554					

LSST community brokers

SOXS (Son Of X-Shooter)

Unique spectroscopic/imaging facility for the ESO-NTT 3.5-m telescope in La Silla


OAPd will be one of the three nodes (with INAF - OA-Brera/OACN) supporting the SOXS operation. The whole Consortium+ESO time will be entirely managed by the consortium!

Two *assegni di ricerca* are foreseen to help in this fundamental task

All Padova-Asiago SN group members are involved in the 13 SOXS WGs

EC: in the SOXS board AP: WG7 (Intermediate luminosity transients) deputy SB: WG13 (Classifications) leader

http://www.brera.inaf.it/~campana/SOXS/Son_of_X-Shooter.html

Enrico Cappellaro Laura Greggio Stefano Benetti

Andrea Reguitti Giorgio Valerin Irene Salmaso

POST-DOC

STAFF

Francesco Guidolin

Science Interests

- Telassification program
- 🗲 SNe lax
- ₩ Faint Core-collapse SNe
- Progenitor study
- 100 Rates
- 💫 Gap Transients
- Interacting SNe
- 📡 Radio Transients
- 💬 Multimessenger Astronomy

Andrea Pastorello Lina Tomasella

