Fast Photon Counting Stellar Intensity Interferometry: Prospects for the ASTRI Mini-Array

A. Spolon¹, M. Fiori¹, L. Zampieri¹, L. Lessio¹, L. Paoletti¹, C. Pernechele¹ and the ASTRI Project

¹INAF - Astronomical Observatory of Padova, Italia

Funded by the European Union NextGenerationEU

Stellar Intensity Interferometry (SII)

How it works?

Mini-Array

Intensity interferometry evaluates the correlations

between pairs of point sources (P_1 , P_2).

Each point radiates light and is independent of each other.

SII in based on correlation of the light

intensity fluctuations of a star detected at

Methods

Photon-Counting Intensity Interferometry

Counting coincidences in photon arrival times measured at 2 telescopes and exploit the quantum properties of the light emitted from a star.

2nd order (discrete) degree of coherence of a star [5]

Measures the degree of correlation of its lights.

Depends on telescopes separations d and the

two or more telescopes.

Combiner Working principle of an intensity interferometer. From [1].

What can we measure?

Radius and surface structures of bright and hot stars (O/B \rightarrow F/G type).

SII was pioneered by **Brown & Twiss** in Narrabri, Australia [2]. They made the first direct astronomical measure

relative delay τ between them.

The Aqueye/Iqueye team!

ASIAGO SII experiment

1.22m Galilelo (IFI+Iqueye) + 1.82m Copernico (Aqueye+) Telescopes @Asiago (Italy)

- First measurements of the correlation of the arrival times of photons from a star counting coincidences in post-processing.
- Validating the feasibility of this type of measurements on a km baseline

ASTRI SII Simulations

Simulated g⁽²⁾ measurements of two different stars with an uniform disk.

0.00025 V mag: 1.83 --- input UD model

 N_X , N_Y = # photons detected at telescopes X and Y in time T N_{XY} = # simultaneous detection in bin *dt* N = # intervals (T/*dt*)

of stellar radii via SII.

Operating simultaneously ARRAY of large area telescopes

- + connecting them electronically \rightarrow renewed interest for SII
- \rightarrow Tool for imaging obs. in optical band
- (~long-baseline radio interferometric array).

9 Imaging Atmospheric Cherenkov Telescopes [3] to:

- study gamma-ray sources at very high energy (TeV)
- perform optical SII observations \rightarrow ASTRI SII Instrument (SI³)

Goal: using the **long multiple baselines (36)** of all 9 telescopes to do image reconstruction with resolution of ~100 µas. [4]

 $SI^3 =$ optical widow (1-8 nm filter; centered at 420-500 nm).

References

-400

1. Foellmi C., 2009, A&A, 507, 1719.

u [m]

- 2. Brown, R. H. & Twiss, R. Q. 1957, Proc. R. Soc. London Ser. A, 242, 300
- 3. Scuderi et al. 2022, JHEAp, 35, 52
- 4. Zampieri L., et al., 2022, SPIE Conference Series, Vol. 12183
- 5. Zampieri L., et al., 2021, MNRAS, 506, 1585

