

- Negative (radially declining) gradient = inside-out star-formation (SF), weak feedback
- Shallow/positive gradient = galaxy mergers, strong feedback, fast mixing
- Accurate interpretation of gradients is crucial!

- Cosmological, hydrodynamic zoom-in simulations of MW-type halos
- High spatial resolution in CGM ($\sim 1 \mathrm{kpc}$) and ISM (~ 300 pc) \& high cadence of outputs ~ 5 Myr = capturing small-spatial scale and short time-scale variations - Shown here: one of the six FOGGIE halos

FOGGIE SIMULATIONS

- Metallicity gradients are extremely stochastic on short time-scales, particularly at high-z
- FOGGIE galaxies spend $\sim 40-50 \%$ of their lifetime up to $z>2$ more than a typical observational uncertainty away from the mean trend

- Difficult to interpret high-z JWST measurements

PROPOSED SOLUTION

- Characterising the full distribution of metallicity
- Free from assumptions about disk/geometry

Novel, nonparametric
method
+/- 0.03 dex/kpc

- Metallicity distribution characteristics (median, IQR) respond better to SF feedback than the radial gradient
- Non-parametric quantification of metallicity distribution will be informative for JWST observations at high-z

