

Galactic Chemical Evolution: impact of stellar yields and link with the Galactic Habitable Zone

Marco Pignatari

1

- @Konkoly Observatory, CSFK HUN-REN & MTA Centre of Excellence, Budapest, Hungary

"Molecules and planets in the outer Galaxy: is there a boundary of the Galactic Habitable Zone?" - 12-14 November 2024, Florence, Italy

Messages to remember

L. Colzi's talk

- Stellar yields are a crucial source of uncertainty for Galactic Chemical Evolution (GCE) of elements and isotopes.
- Uncertainties vs errorbars: why stellar yields are not provided with errorbars? It is really hard to provide comprehensive errors for stellar yields!
- **Integrated yields of Core-Collapse Supernovae are not safe to be used for GCE studies in the form they are usually provided. But the CCSNe models and the ejected yields are ok.**
- A good example: $[Mq/Si]$ vs $[C/O]$ in the solar neighbourhood & Si isotopes in presolar SiC grains.
- GCE of the radioactive heat-sources for planets: what is the Th/Eu trend in the MW disk? E. Delgago Mena's talk

S. Viti &

E. Spitoni's talks

Stellar yields and GCE

Timmes+ 1995 ApJS 98, Gibson+ 1997 MNRAS 290, Chiappini+ 2005 A&AL 27 ...

... to Prantzos+ 2018 MNRAS 476, Gronow+ 2021 A&A 656,

Approach:

produce GCE models using different existing stellar yields sets, to evaluate the impact of their variations on GCE predictions.

Goswami & Prantzos 2000 A&A 359

What difference is relevant for GCE?

When trying to reproduce the elements (well.. the [element/Fe]):

- The yield sets allowing to fit better the observations for an element may not work for another element (e.g., Na vs Al).
- For some elements, there are no yields configuration to use for GCE that are consistent with observations (e.g., K).

Romano+ 2010 A&A 522

The impact of the ${}^{12}C(\alpha, V)^{16}O$, from Imbriani+ 2000 ApJ 558 and Deboer+ 2017 RMP 89

uncertainty, still strong non-linear variations

8 Even with ~20%

- All Sources

- **Massive Stars** $\overline{}$
- $-$ SN1A
- **AGB Stars** -
- NSM r-process

 $(x1.51)$

32

33

56

75.54 1.15

95.02 0.75

34

 4.21

57

90.14 3.10

91.75 2.12

36

 0.02

58

 0.25

 0.28

26.22 0.13

S

Reifarth+ 2000 ApJ 528 The 34S(n, v)³⁵S rate made life really hard for ³⁶S.

Preliminary: No statistics yet!

Pignatari+ 2016, ApJS 225

 $\overline{\text{S-36}}$

 $10¹$

M $[M_{\odot}]$

Monthly Notices

of the ROYAL ASTRONOMICAL SOCIETY

MNRAS 524, 6295-6330 (2023) Advance Access publication 2023 July 21

https://doi.org/10.1093/mnras/stad2167

● **16 authors**

● **5 PhD/young PDRA**

● **Target communities: nuclear astrophysics & planet formation/modeling**

The chemical evolution of the solar neighbourhood for planet-hosting stars

Marco Pignatari,^{1,2,3,4,5} Thomas C. L. Trueman, ^{1,3,4} Kate A. Womack ⁽³⁾, 3 Brad K. Gibson, ^{3,5} Benoit Côté, 1,4,5,6 Diego Turrini, 7,8,9 Christopher Sneden, ¹⁰ Stephen J. Mojzsis, ^{1,2,11} Richard J. Stancliffe, 4.14 Paul Fong, 3.4 Thomas V. Lawson[®], $3.4.13$ James D. Keegans, 4.14 Kate Pilkington, 15 Jean-Claude Passy, ¹⁶ Timothy C. Beers^{5,17} and Maria Lugaro^{1,2,18,19}

> Experimental Astronomy (2022) 53:225-278 https://doi.org/10.1007/s10686-021-09754-4

ORIGINAL ARTICLE

Exploring the link between star and planet formation with Ariel

Diego Turrini^{1,2} . Claudio Codella³ . Camilla Danielski⁴ . Davide Fedele^{2,3} . Sergio Fonte¹ · Antonio Garufi³ · Mario Giuseppe Guarcello⁵ · Ravit Helled⁶ · Masahiro Ikoma⁷ · Mihkel Kama^{8,9} · Tadahiro Kimura⁷ · J. M. Diederik Kruijssen¹⁰ · Jesus Maldonado⁵ · Yamila Miguel^{11,12} ⁰ · Sergio Molinari¹ · Athanasia Nikolaou^{13,14} · Fabrizio Oliva¹ · Olja Panić¹⁵ · Marco Pignatari^{16,17,18} - Linda Podio³ - Hans Rickman¹⁹ - Eugenio Schisano¹ -Sho Shibata⁷ . Allona Vazan²⁰ . Paulina Wolkenberg¹

Received: 30 June 2020 / Accepted: 13 April 2021 / Published online: 15 October 2021

Effect of stellar yields & the Mg puzzle

- 6 stellar yield sets
- the solar $[C/O]$ is obtained using 4 sets
- by using 2 other sets we get closer to the solar [Mg/Si], but none of them show enough Mg

Mg puzzle!

Old problem, identified first from using WW95 CCSNe yields (e.g., Gibson+ 1997 MNRAS 290 and several works following)

14 The zoo of solar normalizations

Nuclear astrophysics point of view: it should not be that difficult..

- **C**: product of $3\alpha \rightarrow 12C$ reaction (preSN partial He-burning)
- \cdot **O**: product of the ¹²C(α,γ)¹⁶O reaction (preSN He-burning)
- **Mg**: product of the ²⁰Ne(α,ν)²⁴Mg reaction (preSN C/Ne-burning)
- **Si**: product of ¹⁶O+¹⁶O (explosive O-burning)

M=15Msun, Z=0.02 Ritter+2018 MNRAS 480 MESA progenitor Fryer+12 explosion

16 Work in progress: comparison with stellar archaeology data - Pignatari+ in prep.

Work in progress: comparison with stellar archaeology data - Pignatari+ in prep.

The presolar grain journey from stars to us

Working with presolar grains

- Study of nucleosynthesis isotopic anomalies in bulk grains and single grains
- Study of meteoritic anomalies, carried by different types of presolar grains
- Study of isotopic signatures not modified by intrinsic nucleosynthesis in the parent star (GCE study for stars that we cannot observe anymore, died "shortly" before the formation of the Sun)

https://presolar.physics.wustl.edu/presolar-grain-database/

Time GCE window provided by grains

3 Gyr > τ > 0.5 Gyr

< 0.3 Gyr in the ISM (Heck+ 2020, PNAS 117)

ESS

Nittler+ 2005 ApJ 618

Scenarios to explain the Si isotopic ratios measured:

- Clayton 1997 ApJ 484: stars diffused outward from more metal-rich part of the disks (the Sun was born at 6.6 kpc), i.e., giving higher Si29 and Si30 with respect to Si28;
- Alexander & Nittler 1999 ApJ 526: Cl97 may work, but other processes may be at play;
- Lugaro+ 1999 ApJ 527: effect of heterogeneous GCE from CCSNe contribution ...
	- … and moving further using the isotopes from two elements (Nittler 2005 ApJ 618) ;
- Clayton 2003 ApJ 598: mixing line due to a merger between a metal-poor dwarf galaxy and the Milky Way disk 5-6 Gyr ago;
- Lewis + 2013 ApJL 768, reviewing the problem and supporting the role of migration in shaping the observed scatter.

23

Open-source GCE codes OMEGA

http://nugrid.github.io/NuPyCEE https://github.com/becot85/JINAPyCEE

Comment

Rec. value is from GKD03. MACS vs. kT table from GKD03, but extended above kT=60 keV with norm. energy dependence from endfb71. Note that there is discrepancy between the activation measurement from BSR02b and the ZOF value from GKD03. A further investigation is required!!! Last review: August 2014

List of all available values

GCE of radioactive heat-source isotopes

Monthly Notices ROYAL ASTRONOMICAL SOCIETY

MNRAS 516, 3786-3801 (2022) Advance Access publication 2022 August 25

https://doi.org/10.1093/mnras/stac2361

Enrichment of the Galactic disc with neutron-capture elements: Gd, Dy, and Th

T. Mishenina, ¹ M. Pignatari, ^{2,3,4,5} * † T. Gorbaneva, ¹ B. Côté ^{(2,5,6}† A. Yagüe López, ^{2,7}† F.-K. Thielemann^{8,9} and C. Soubiran¹⁰

Talk by E. Delgado Mena

Blend with Co, Fe, Ni, Mn lines!

What is the [Th/Eu] trend in the MW disk? ²⁷

See also Frank+ 2014 Icar 243, Unterborn+ 2015 ApJ 806, Botelho+ 2019 MNRAS 482

A&A 663, A70 (2022)

Farougi+ 2022 A&A 663

Messages to remember

- Stellar yields are a crucial source of uncertainty for Galactic Chemical Evolution (GCE) of elements and isotopes.
- Uncertainties vs errorbars: why stellar yields are not provided with errorbars? It is really hard to provide comprehensive errors for stellar yields!
- **Integrated yields of Core-Collapse Supernovae are not safe to be used for GCE studies in the form they are usually provided. But the CCSNe models and the ejected yields are ok.**
- A good example: $[Mq/Si]$ vs $[C/O]$ in the solar neighbourhood & Si isotopes in presolar SiC grains.
- GCE of the radioactive heat-sources for planets: what is the Th/Eu trend in the MW disk?

ANNOUNCING: qeoastronomy GEOASTRONOMY

A NEW ERC Synergy project, starting in 2025 and running for 6 years!

EXOPLANET MAGMAS

Laboratory experiments of

outgassing from planetary

cPI. Steve Mojzsis (CSFK, Hungary)

TRANSLATE **COMPOSITION OF STARS TO PLANETS**

Planetary geochemistry and nuclear astrophysics of exoplanets.

interiors

PI. Fabrice Gaillard (CNRS, France)

Pl. Kevin Heng (LMU, Germany)

EXOPLANET ATMOSPHERES Theory of exoplanet atmospheres

Exoplanetary systems can be markedly different from our own A non-Earth-centric view is REQUIRED to make progress We are recruiting Junior and Senior Staff Research Associates and Ph.D. students