Galactic habitable zones with chemical evolution models

DI ASTROFISICA

Emanuele Spitoni

 2024

**:LORENCE
IOVEMBEI**

 14th November 2024

The Galactic habitable zone is defined as the region with sufficiently high metallicity to form planetary systems in which Earth-like planets could be born and might be capable of sustaining life, after surviving to close supernova explosion events.

 (GONZALEZ ET AL. 2001)

Galactic Habitable Zone

Credit: NASA

The Galactic habitable zone is defined as the region with sufficiently high metallicity to form planetary systems in which Earth-like planets could be born and might be capable of sustaining life, after surviving to close supernova explosion events.

(GONZALEZ ET AL. 2001)

Galactic Habitable Zone

Credit: NASA

The GHZ identified as an annular region between 7 and 9 kpc from the Galactic Centre (Lineveawer +04, Spitoni +14,+17).

When a SN explodes, it emits STRONG RADIATION that may ionize the planets atmosphere, causing stratospheric ozone depletion.

THE ULTRAVIOLET FLUX from the host star can damage genetic material DNA, and consequently the planet sterilization.

 (Gehrels +03)

PROBABILITY OF FORMING EARTH-LIKE planets around FGK and M stars

PROBABILITY OF FORMING EARTH-LIKE planets around FGK and M stars

The GHZ map

Hazards from Supernova Explosions

PROBABILITY OF FORMING EARTH-LIKE planets around FGK and M stars

Hazards from Supernova Explosions

PROBABILITY OF FORMING EARTH-LIKE planets around FGK and M stars

Spitoni +17

THE PROBABILITY OF FORMING EARTH-LIKE PLANETS

FROM OBSERVATIONS

Sistems with one planet

Largest planet in a system with multiple planets

Smallest planet in a system with multiple planets

THE PROBABILITY OF FORMING EARTH-LIKE PLANETS

FROM OBSERVATIONS

The frequencies of the planets with Earth-like sizes are almost independent of the metallicity,

Sistems with one planet

Largest planet in a system with multiple planets

Smallest planet in a system with multiple planets

The First Earth-like Planets from simulations

Earth-like planets likely formed from circumstellar disks with metallicities Z≥ 0.1 Zsun, i.e [Fe/H]>-1

The First Earth-like Planets from simulations

Earth-like planets likely formed from circumstellar disks with metallicities Z≥ 0.1 Zsun, i.e [Fe/H]>-1

THE PROBABILITY OF FORMING EARTH-LIKE PLANETS

BUT NOT HOT JUPITERS

 Migration due to turbulent fluctuations in the disk could destroy the terrestrial planets

THE PROBABILITY OF FORMING GAS GIANT PLANETS

 $P_{GGP}\left([\text{Fe/H}] \right) = 0.03 \times 10^{2.0} [\text{Fe/H}]$

THE PROBABILITY OF FORMING GAS GIANT PLANET

Adibekyan +19

GAS GIANT PLANET PROBABILITIES AROUND:

Gaidos & Mann 14, Zackrisson+16

FGK STARS

 $P_{GGP/FGK}$ ([Fe/H]*, M* $_{\star})=0.07\times10^{1.8}[\textrm{Fe/H}]\left(\frac{M_{\star}}{M_{\odot}}\right)$ M_{\odot} ◆

M STARS

$P_{GGP/M}\left(\text{[Fe/H]},M_{\star}\right)=0.07\times10^{1.06}\text{[Fe/H]}\left(\frac{M_{\star}}{M_{\odot}}\right)$ M_{\odot} ◆

GAS GIANT PLANET PROBABILITIES AROUND:

<u>ao</u> 6 | Ann 14, Zackrisson + 16

◆

CEM predictions for the Galactic disc (Spitoni+17)

The MW chemical evolution Model

• Two infall model: the halo and thick disk form in a first gas accretion event, while the thin disk forms in a separate event occurring on much longer time-scales

$$
A(R,t) = a(r)e^{-t/\tau_H(r)} + b(r)e^{-(t-t_{max})/\tau_D(r)}
$$

Spitoni +17

Main model assumptions…

• Inside-out formation

Larson's (1976) dissipative collapse: spheroidals components are created faster, whereas disks on longer timescales (see also Cole et al. 2000),

Matteucci & Francois (1989), Chiappini et al. (2001) $\sigma_D = 1.033R - 1.27 \text{ Gyr}$

Galactic Habitable Zone

Main model assumptions…

• Inside-out formation $\tau_D = 1.033R - 1.27 \text{ Gyr}$

Main model assumptions…

• Inside-out formation

- SFR proportional to the $\psi(R, t) \propto \nu \sigma_g^k$ Schmidt (1959) law **P** Srk proportional to the $\psi(R, t) \propto \nu \sigma_{g}^{\kappa}(R, t)$ Schmidt (1959) law
- **• Scalo (1986) IMF**
- **• Threshold in the gas** surface density for the **SF**

Kennicutt (1998,1989) 4-7 Msun pc-2

CEM results

M dwarf stars

- ✓**M dwarfs comprise** ∼**70% of all stars in the Galaxy**
- **✓ Small planets are easier to detect orbiting small stars via the radial velocity and transit techniques, as spectroscopic;**
- ✓**Circumstellar Habitable zones are closer to these stars than those of Sun-like stars, increasing the geometric probability of observing a transit;**
- ✓**Their extremely long lifetimes ample time for biological development and evolution on orbiting planets**

(Credit S. Cassisi)

The probabilities to find gas giant planets around FGK/M stars

The probabilities to find gas giant planets around FGK/M stars

The probabilities to find Earth-like planets without gas giant planets around FGK/M stars

The two probabilities are substantially different for [Fe/H]>0 in inner regions

THE GHZ MAP: TOTAL NUMBER OF FGK/M STARS HOSTING HABITABLE EARTH-LIKE PLANETS (R,t)

N_{\star} *life* $(R, t) = P$ *GHZ* $(R, t) \times N_{\star tot}(R, t)$

THE GHZ MAP: TOTAL NUMBER OF FGK/M STARS HOSTING HABITABLE EARTH-LIKE PLANETS (R,t)

$$
N_{\star\,life}(R,t)=\Bigl|P_{GHZ}(R,t)\Bigr|\times N_{\star tot}(R,t)
$$

$$
P_{GHZ}(FGK/M, R, t) =
$$

$$
\frac{\int_0^t SFR(R, t')P_{E/FGK, M}(R, t')P_{SN}(R, t')dt'}{\int_0^t SFR(R, t')dt'}
$$

The fraction of all stars having Earths (but no gas giant planets) which survived supernova explosions as a function of the galactic radius and time.

Prantzos 08

$\overline{P_{GHZ}(FGK/M,R,t)}=% {\displaystyle\sum\limits_{n=0}^{\infty}} \left(\overline{F_{n}^{n}}+\overline{F_{n}^{n}}\right)$ \int_{0}^{t} $\int_0^\infty SFR(R,t')P_{E/FGK,M}(R,t')P_{SN}(R,t')dt'$ \int_{0}^{t} $\int_0^\cdot \, SFR(R,t') dt'$

BUT NOT THE HAZARDS from Supernova Explosions

 If SNR(R,t) has been higher than twice the average SN rate <RSN*> in the solar neighborhood during the last 4.5 Gyr =>NO LIFE

Hazards from Supernova Explosions

 If SNR(R,t) has been higher than twice the average SN rate <RSN*> in the solar neighborhood during the last 4.5 Gyr =>NO LIFE

Hazards from Supernova Explosions

If SNR > 2 <RSN*> then P_{SN} = 0 else $P_{SN}=1$

 If SNR(R,t) has been higher than twice the average SN rate <RSN*> in the solar neighborhood during the last 4.5 Gyr =>NO LIFE

Hazards from Supernova Explosions

If SNR > 2 <RSN*> then $P_{SN} = 0$ else $P_{SN}=1$

The PGHZ probabilities without SN effects

The PGHZ probabilities without SN effects

The PGHZ probabilities are identical at large Galactocentric distances. This is due to the fact that, the P_E probabilities are similar for sub-solar values

The PGHZ probabilities without SN effects

The PGHZ probabilities become to be different only for Galactic times larger than 8 Gyr.

The PGHZ probabilities with SN effects

The PGHZ probabilities with SN effects

Both PGHZ probabilities peak at 10 kpc

THE GHZ MAP Spitoni+17

 22

89 *N*? *lif e*

THE GHZ MAP Spitoni+17

At the peak (8 kpc, at the present day)

 $N_{\star\,M,life}$ $N_{\star \ FGK, life}$ $= 10.60$

At the peak (8 kpc, at the present day)

 $N_{\star\,M,life}$ $N_{\star \ FGK, life}$ $= 10.60$

This ratio is consistent with the IMF we adopt in our model.

The ratio between the fraction of M stars over FGK stars (by number) in a newborn population adopting a Scalo IMF is:

$$
\left(\frac{M}{FGK}\right)_{\text{Scalo IMF}} = \frac{\int_{0.08 M_{\odot}}^{0.45 M_{\odot}} m^{-2.35} dm}{\int_{0.45 M_{\odot}}^{1.4 M_{\odot}} m^{-2.35} dm} = 11.85
$$

The role of the dust

The metallicity of stars, which is observationally related to the probability of the presence of hosted planets

The initial dust-to-gas ratio of the protoplanetary discs

The role of the dust

The metallicity of stars, which is observationally related to the probability of the presence of hosted planets

[Fe/H] versus the dust-to-gas ratio

Model of Gioannini et al. (2017)

The initial dust-to-gas ratio of the protoplanetary discs

MODEL FITS IN THE SOLAR NEIGHBORHOOD

[Fe/H]=96.49 *(D/G)* **-0.92**

GAS GIANT PLANET PROBABILITIES AROUND:

FGK STARS

$P_{GGP/FGK}$ ([Fe/H]*, M* $_{\star})=0.07\times10^{1.8}[\textrm{Fe/H}]\left(\frac{M_{\star}}{M_{\odot}}\right)$ M_{\odot} ◆

M STARS

$P_{GGP/M}\left(\text{[Fe/H]},M_{\star}\right)=0.07\times10^{1.06}\text{[Fe/H]}\left(\frac{M_{\star}}{M_{\odot}}\right)$ M_{\odot} ◆

GAS GIANT PLANET PROBABILITIES AROUND:

FGK STARS

M STARS

$P_{GGP/M}\left(\mathrm{[Fe/H]},M_{\star}\right)=0.07\times10^{1.06}\overline{\left(\frac{f(D/G)}{M_{\odot}}\right)}\left(\frac{M_{\star}}{M_{\odot}}\right)$ M_{\odot} ◆ *f*(*D/G*)

 $N_{\star \, life}$ **Number of stars similar to Sun born from the beginning up to the formation of the Solar System (Fiore.. ES+24)**

Solar vicinity

8 kpc

2 kpc

✓ Same mass as the Sun

✓ Solar metallicity $12 + (Fe/H) = 7.50 \pm 0.04$ dex

$N_{\star \; life}$ **Number of stars similar to Sun born from the beginning up to the formation of the Solar System (Fiore.. ES+24)**

$N_{\star \; life}$ **Number of stars similar to Sun born from the beginning up to the formation of the Solar System (Fiore.. ES+24)**

Milky Way Galaxy Diameter: 87,400 light-years

 N_{\star}

THE GHZ MAP

Andromeda Galaxy Spitoni+14

> **M31 is the largest galaxy of the Local group, more massive and with more stars than the Milky Way**

Andromeda Galaxy Diameter: 152,000 light-years

Spitoni+14

 N_{\star} *life*

Andromeda Galaxy

In the region between 4-14 kpc there is a high enough SN rate to annihilate life on formed planets .M 31 was more SF active in the past than the Milky Way (Renda+05, Yin+09)

Spitoni+14

 N_{\star} *life*

Andromeda Galaxy

In the region between 4-14 kpc there is a high enough SN rate to annihilate life on formed planets .M 31 was more SF active in the past than the Milky Way (Renda+05, Yin+09)

Future perspective

Credit: Quanta magazine

Future perspective • Effects of spiral arms and stellar migration on the GHZ

Palla+24 (migration)

SUMMARY

- **• Assuming prescriptions for the destructive effect from close-by SN explosions, the larger number of FGK and M stars with habitable planets are in the solar neighborhood.**
- **• At the present time the total number of M stars with habitable terrestrial planets without gas giant ones are** ≃ **10 times the number of FGK stars**
- **• The probability of finding gas giant planets can be expressed in terms of the D/G ratio**
- **• Our Sun is the is the 26.1×106 th star born in the solar vicinity of this kind**
- **• In the Andromeda galaxy the GHZ is shifted towards external regions**