Astrochemistry in Extreme Environments

Thomas G. Bisbas Zhejiang Laboratory thomasbisbas.com tbisbas@zhejianglab.com

Molecules and planets in the outer Galaxy Florence, 12-14 Nov, 2024

之江实验室 ZHEJIANG LAB

- Founded in September 2017, initiated by the **Zhejiang Province**
- Main focus: intelligent computing
- •>3000 researchers

Photodissociation Regions (PDRs) Neutral regions

Atomic-to-molecular (HI-to- H_2) transition

JWST

Radiation

Interstellar Radiation Field (ISRF)

- Extreme-ultraviolet (EUV): $h\nu \ge 13.6 \,\mathrm{eV}$
 - Far-ultraviolet (FUV): $6 < h\nu < 13.6 \,\mathrm{eV}$

- HII regions: regions around a bright source, rich in EUV photons
- **Photodissociation Regions (PDRs):** regions rich in FUV photons. Important for controlling the ISM chemistry.

Photodissociation Regions

A large fraction of the ISM is associated with PDRs

PDRs4all (Berne+ 2022)

<u>a</u>)

C

The higher the transition, the denser the ISM it traces.

What are "extreme" conditions?

"*Extreme*" defined in contrast to the more "*typical*" ISM environments

- Radiation Field
- Gas temperature
- Density
- Pressure
- Cosmic-ray flux
- ·X-ray flux
- Metallicity
 - ...etc

CO Spectral Line Energy Distributions (SLEDs)

Pensabene+ (2021) See also review by Wolfire+ (2023)

Elevated high-J CO SLEDs indicate the presence of a heating source at high column densities

Cosmic rays

 $Log F_{\chi}$ (erg s⁻¹ cm⁻²)

Effect of FUV intensity

Bisbas et al. (2021)

- •N(H_2) is affected in the outer parts
- •N(CII) is increased
- •W(CII) is highly increased in the outer parts.

 \rightarrow [CII] deficit?

 $G = 10^3 G_0$

 H_2

CI

CO

CO (1-0)

CII

[CII] $158 \mu m$

 $\times 50$

Exploring the origin of [CII]-deficit: thermal saturation of [CII]

CII emission

FIR emission

[CII]/FIR

CII-deficit in the Trapezium

Pabst+ 21 Goicoechea+ 15

Effect of cosmic-rays

Bisbas et al. (2015a, 2017b, 2021)

- •N(H₂) remains nearly unchanged
- •N(CII), N(CI) and W(CII) and W(CI), are increased due to destruction of CO by cosmic-rays (Bisbas et al., **2015a, 2017b**)
- **R1:** He + CR \rightarrow He⁺ + e⁻ **R2:** $He^+ + CO \rightarrow He + O + C^+$ **R3:** $C^+ + e^- \rightarrow C + hv$

•W(CO) decreases in the outer parts but increases at high column densities

Fiducial model

-24.0

-23.5

-23.0

-22.5

-22.0

-21.5

-21.0

-20.5

20.0

CII

[CII] $158 \mu m$

 $\times 5$

 $\zeta_{\rm CR} = 10^{-14} \, {\rm s}^{-1}$

[CI] (1-0)

 $\times 50$

Destruction of CO by CRs: not a linear correlation!

CO can 're-form' in high cosmic-ray ionization rates

The crucial role of OH

OH formation is initiated by:

→ Proton transfer reaction $O + H_3^+ \rightarrow OH^+ + H_2$

→ Charge transfer reaction $O + H^+ \rightarrow O^+ + H$ **ON:** Solid line **OFF:** Dashed line

At moderate-to-high CRIR and in low-Z gas, CO formation depends on the OH intermediary:

> $C + OH \rightarrow CO + H$ $C^+ + OH \rightarrow CO^+ + H$

See Berg+ 2019 (ApJ, 874, 93) for detailed discussion

Galliano+ 2021 (A&A, 649, 18)

 $\zeta_{CR} = 10^{-15} \text{ s}^{-1}$

[CII] decreases

[CI] decreases

CO increases (!)

Bisbas et al. (2024)

[CI]-dark galaxies NGC 6052

15 10 offset (arcsec) -5

-10

-15

flux density (Jy)

 $SFR \sim 18 M_{o}/yr$ Colliding galaxies

Michiyama et al. (2020)

Conversion factors

Madden+ 2020

Conversion factors

Conclusions and remarks

- The carbon cycle (C+/C/CO) is a non-linear function of the ISM parameters (cosmic-rays, FUV intensities, metallicity)
- [CII]-deficit can result from strong FUV radiation fields
- C/O is very important! 4th basic parameter?
- Low C/O may explain [CI]-dark galaxies
- The CO-to-H2 factor depends on the C/O ratio

