

Molecules and planets in the Outer Galaxy Florence 12-14 November 2024

Isotopic abundance ratios What's up in the outer edge of the Milky Way?

Laura Colzi

(Centro de Astrobiología, CSIC-INTA) November 12th 2024

Francesco Fontani, Donatella Romano, and many others…

Grants PID2019-105552RB-C41and PID2022-136814NB-I00 funded by:

la Unión Europea

Isotopic ratios: a good indicator of nucleosynthesis

IMAGE CREDIT: R. N. Bailey Wikipedia

IMAGE CREDIT: R. N. Bailey Wikipedia

Galactic chemical evolution models

Prescriptions for nucleosynthesis from Romano et al. (2017)

Galactic chemical evolution models: the ¹²C/¹³C ratio

Early Universe: fast rotating massive stars important.

Solar data and observations: with updates C-production yields from Nomoto+2013. In both cases nova are not important to produce ¹³C.

Updated 12C/13C galactocentric trends

Updated 12C/13C galactocentric trends

Updated ¹²C/¹³C galactocentric trends

Updated 12C/13C galactocentric trends

Increasing trend with the galactocentric distance

Updated ¹²C/¹³C galactocentric trends

IRAM 30m telescope (Sierra Nevada, Spain)

101 massive star-forming regions: 87 (Colzi et al. 2018a,b) + 14 (Colzi et al. 2022b)

IRAM 30m telescope (Sierra Nevada, Spain)

101 massive star-forming regions: 87 (Colzi et al. 2018a,b) + 14 (Colzi et al. 2022b)

Inner Galaxy (TOPGöt) sample (Mininni et. al. 2020) D_{GC} from 2 up to 12 kpc

Linear Regression Fit

H¹⁴NC/H¹⁵NC = (20 ± 6) D_{GC}(kpc) + (221 ± 42) HC¹⁴N/HC¹⁵N = (21 ± 9) D_{GC}(kpc) + (250 ± 67)

Consistent with the work done by Adande & Ziurys (2012)

Laura Colzi

Colzi, L. et al. (2018b), MNRAS, 478, 3693

Linear Regression Fit

H¹⁴NC/H¹⁵NC = (20 ± 6) D_{GC}(kpc) + (221 ± 42) HC¹⁴N/HC¹⁵N = (21 ± 9) D_{GC}(kpc) + (250 ± 67)

Consistent with a the work done by Adande & Ziurys (2012)

Laura Colzi

Colzi, L. et al. (2018b), MNRAS, 478, 3693

Galactic chemical evolution (GCE, *Romano et al. 2017*) model predicts:

 \rightarrow linear trend up to 8 kpc: introduction of NOVAE OUTBURST (efficient production of 15N)

 \rightarrow flattening trend above 8 kpc: caused by assumed stellar yields

Nova Cygni 1992 – HST Image

Laura Colzi

Colzi, L. et al. (2018b), MNRAS, 478, 3693

TREND IS REPRODUCED BUT ABSOLUTE VALUES ARE DIFFERENT!!

- \triangleright Mass ejected (M_{ei}) of ¹⁵N in a single outburst is different
- **Example 1** chemical fractionation in dense clouds

Laura Colzi

Colzi, L. et al. (2018b), MNRAS, 478, 3693

TREND IS REPRODUCED BUT ABSOLUTE VALUES ARE DIFFERENT!!

 \triangleright Mass ejected (M_{ei}) of ¹⁵N in a single outburst is different

chemical fractionation in dense clouds

Laura Colzi

Colzi, L. et al. (2018b), MNRAS, 478, 3693

Ø LOW-TEMPERATURE ISOTOPIC-EXCHANGE REACTIONS?

 $14N^{15}N + {14N_2}H^+ \rightarrow {14N^{15}N}H^+ + {14N_2} + 10.3 K$ $14N15N + 14N₂H⁺$ \rightarrow $15N14NH⁺ + 14N₂ + 2.1 K$

 $15N + C^{14}N \rightarrow 14N + C^{15}N + 22.9 K$

e.g.

Terzieva & Herbst (2000); Charnley and Rodgers (2002); Rodgers & Charnley (2008a,b); Wirström et al. (2012); Roueff et al. (2015); Wirström & Charnley (2018); Loison et al. (2019), Hily-Blant et al. (2020), Sipilä, Colzi et al. (2023)

\rightarrow DIFFERENT RATES FOR DISSOCIATIVE RECOMBINATION OF N₂H⁺? *e.g. Loison et al. (2019), Hily-Blant et al. (2020), Redaelli et al. (2020)*

\rightarrow ISOTOPE-SELECTIVE PHOTODISSOCIATION OF N₂? e.g. Furuya & Aikawa (2018), Colzi et al. (2019), Lee et al. (2021), Spezzano et al. (2022), Sipilä, Colzi et al. (2023)

GCE MODEL (*Romano et al. 2017*) predict for present day a $local$ ISM $14N/15N < 441$

Observed values might be not affected by chemical fractionation but by Galactic chemical evolution

TREND IS REPRODUCED BUT ABSOLUTE VALUES ARE DIFFERENT!!

- Mass ejected (M_{ei}) of ¹⁵N in a single outburst is different
- **Example 1** chemical fractionation in dense clouds

Ejected Mass from single novae outburst

Values from hydrodynamic simulations of nova outbursts*: José & Hernanz (1998*, coloured symbols), *Yaron et al. (2005*, black symbols) and *Starrfield et al. (2009*, small empty circles)

 $\overline{M}_{ejected} = 10^{-7} M_{\odot}$ (Romano+2017)

Updated GCE models with stellar rotators

Table 1. Nucleosynthesis prescriptions for different models.

Romano et al. (2019)

Updated GCE models with stellar rotators

Galactic chemical evolution (*Romano et al., 2019*) UPDATED

taking into account different intial rotational velocities (*Limongi and Chieffi 2018*)

NOW THE GCE MODEL BETTER REPRODUCE THE TREND WE FOUND

Laura Colzi

Colzi, L. et al. (2018b), MNRAS, 478, 3693

Updated GCE models with stellar rotators

Galactic chemical evolution (*Romano et al., 2019*) UPDATED

taking into account different intial rotational velocities (*Limongi and Chieffi 2018*)

NOW THE GCE MODEL BETTER REPRODUCE THE TREND WE FOUND

Laura Colzi Reference: <u>Colzi, Cop</u>bitati, F., (RiQillaby, M.N & Als24078, b369191RAS, 478, 3693

IRAM 30m telescope (Sierra Nevada, Spain)

101 massive star-forming regions: 87 (Colzi et al. 2018a,b) + 14 (Colzi et al. 2022b)

Outer Galaxy (CHEMOUT) sample (Fontani, F., Colzi, L. et al. (2022), A&A, 660, A76) 35 massive star-forming regions D_{GC} from 12 up to 23.5 kpc

CHEMical complexity in star-forming regions of the OUTer Galaxy

PI: Francesco Fontani 35 sources selected from Blair et al. (2008): (i) clearly detected in H_2CO (ii) To span all the distances in the Outer Galaxy

CHEMOUT I:Fontani, F., Colzi, L. et al. (2022a), A&A, 660, A76

CHEMical complexity in star-forming regions of the OUTer Galaxy

CHEMOUT I:Fontani, F., Colzi, L. et al. (2022a), A&A, 660, A76

CHEMical complexity in star-forming regions of the OUTer Galaxy

CHEMOUT I:Fontani, F., Colzi, L. et al. (2022a), A&A, 660, A76

CHEMical complexity in star-forming regions of the OUTer Galaxy

$HCO⁺$ c-C₃H₂

CHEMOUT I:Fontani, F., Colzi, L. et al. (2022a), A&A, 660, A76

CHEMical complexity in star-forming regions of the OUTer Galaxy

NIKA continuum maps at 1.3 and 2 mm to derive the H_2 column densities

Fontani et al. (in prep)

CH3OH studied towards15 sources - Setup: 90.400–98.180 GHz and 140.720–148.500 GHz CHEMical complexity in star-forming regions of the OUTer Galaxy

 \triangleright The emission is dominated by a cold and quiescent gaseous envelope

 \triangle CH₃OH correlates with H₂CO (linewidths and abundances)

CHEMOUT II:Fontani, F., et al. (2022b), A&A, 664, A154

CH3OH studied towards15 sources - Setup: 90.400–98.180 GHz and 140.720–148.500 GHz CHEMical complexity in star-forming regions of the OUTer Galaxy

 \triangleright Abundances decrease \sim factor of 5 with R_{GC}

CHEMOUT II:Fontani, F., et al. (2022b), A&A, 664, A154 Ø This is in line with metallicity-scaled values of carbon [C/H] *Mendez-Delgado et al. (2022)*

CHEMical complexity in star-forming regions of the OUTer Galaxy

ØAnalysis of other molecules shows the same behaviour with [C/H] *Mendez-Delgado et al. (2022)* \triangleright From c-C₃H₂, HCN, HCO, HCO⁺, H¹³CO⁺, SO, CH₃OH, H₂CO

See Diego Gigli short presentation

Diego Gigli Master's thesis 2024

CHEMical complexity in star-forming regions of the OUTer Galaxy

- Target WB89-670 at 23.5 kpc in the far Outer Galaxy with ALMA - Resolution of $1.5"$ \rightarrow 0.11 pc
- Chemical differentation at core scales

See also Shimonishi et al. (2021) for ALMA maps towards WB89-789 at 19 kpc

CHEMOUT IV:Fontani, F., et al. (2024), accepted in A&A

For 14 out of 35 sources we have detected H¹³CN and HC¹⁵N

\rightarrow ¹⁴N/¹⁵N ratios

Nitrogen isotopic ratios ¹⁴N/¹⁵N

Outer Galaxy sources are below the extrapolated Inner Galaxy trend

They follow the parabolic trend:

HCN/HC¹⁵N = -2.58 kpc⁻² × R_{GC}^2 + 57.82 kpc⁻¹ × R_{GC} + 128.94.

Laura Colzi Colzi, L., et al. (2022b), A&A, 667, A151

Outer Galaxy sources are below the extrapolated Inner Galaxy trend

They follow the parabolic trend:

HCN/HC¹⁵N = -2.58 kpc⁻² × R_{GC}^2 + 57.82 kpc⁻¹ × R_{GC} + 128.94.

Laura Colzi Colzi, L., et al. (2022b), A&A, 667, A151

Laura Colzi

Different models takes into account ranges of M_{ei} of ¹⁵N, ¹³C and different masses for White Dwarfs (WDs) progenitors of nova outbursts.

Different models takes into account ranges of M_{ei} of ¹⁵N, ¹³C and different masses for White Dwarfs (WDs) progenitors of nova outbursts.

CHEMOUT III: Colzi, L., Romano, D., Fontani, F. et al. (2022b)

Overall trend from novae with a low-mass WDs as main ¹⁵N producers; Decreasing trend in the OG for strong metal dependence of the ¹⁴N yields.

Laura Colzi

Carbon isotopic ratios ¹²C/¹³C

 $12C \rightarrow$ Primary production in all stars. $13C \rightarrow$ Primary production from massive fast rotators at low metallicities, Secondary production at high metallicity in all stars In both cases nova contribution only on long timescales.

Laura Colzi

Carbon isotopic ratios ¹²C/¹³C

 $12C \rightarrow$ Primary production in all stars.

 $13C \rightarrow$ Primary production from massive fast rotators at low metallicities, Secondary production at high metallicity in all stars

In both cases nova contribution only on long timescales.

Laura Colzi

14N/15N x 13C/12C ratio

Laura Colzi

CONCLUSIONS

Isotopic ratios in the Outer Galaxy are key to constrain Galactic Chemical Evolution models \triangleright Chemical processes in molecular clouds are also needed to be considered → CHEMOUT project *Fontani et al. (2022a,b,2024), Colzi et al. (2022b)*

Molecules and planets in the Outer Galaxy Florence 12-14 November 2024

Isotopic abundance ratios What's up in the outer edge of the Milky Way?

Laura Colzi

(Centro de Astrobiología, CSIC-INTA) November 12th 2024

Francesco Fontani, Donatella Romano, and many others…

funded by:

la Unión Europea

BACK UP SLIDES

Laura Colzi

Reference: Colzi, L., et al. 2018b, MNRAS, 478, 3693 10/22

GALACTIC CHEMICAL EVOLUTION MODELS

Multi-zone model, where the **Galactic disc** is divided in **concentric rings** that evolve at **different rates**

INITIAL CONDITION: - mass of gas at t=0 or fresh gas that accrete; **-** primordial chemical composition;

• STELLAR BIRTHRATE: function with a given star-formation efficiency. à **STELLAR EVOLUTION AND NUCLEOSYNTHESIS OF ELEMENTS**

Laura Colzi Reference: Colzi, L., Fontani, F., Rivilla, V. M., et al. 2018, MNRAS, 478, 3693 20/40

Isotopic ratios: a good indicator of nucleosynthesis

- **Primary production from fast-rotating** low-metallicity massive stars
- Primary production in the base of the convective envelope of AGB (intermediate-mass)
- Secondary production through CNO cycles in MS stars and in the Hburning shells of red giants

$14N$: primary product $15N$: secondary product

- Primary production: from low metallicity massive stars (this is mainly in the outer galaxy where there are less white dwarf and then the secondary production is less efficient)
- Secondary production from hot CNO cycle that occurs in nova outbursts;

MODELS THAT BEST MATCH DATA:

- low densities (10^3 cm^3) \rightarrow diffuse gas
- intermediate kinetic temperatures (20-40 K)
- cosmic-ray ionisation rate unconstrained
- low radiation field
- [O/H] consistent with extrapolated el. gradients
- [C/H] NOT consistent with extrapolated el. gradients $[C/H] > 1/5$ $[C/H]$ modelled $[C/H] \sim 1/14$ $[C/H] \odot$ extrapolated

Laura Colzi *CHEMOUT IV:Fontani, F., et al. (2024), accepted in A&A*

14N/15N as good indicator of nucleosynthesis

14 N: primary product

- Primary production from fast-rotating low-metallicity massive stars
- Primary production in the base of the convective envelope of AGB (intermediate-mass)
- Secondary production through CNO cycles in MS stars and in the Hburning shells of red giants

Laura Colzi

Reference: Colzi, L., Fontani, F., Rivilla, V. M., et al. 2018, MNRAS, 478, 3693

(cold) CNO-I cycle: (important in Sun)

Hot CNO-I cycle: (novae, x-ray bursts…)

Galactic chemical evolution (*Romano et al., 2019*) UPDATED

taking into account different intial rotational velocities (*Limongi and Chieffi 2018*)

NOW THE GCE MODEL EXACTLY REPRODUCE THE TREND WE FOUND

Laura Colzi Reference: Colzi, L., et al. 2018b, MNRAS, 478, 3693 11/22

Laura Colzi Reference: Colzi, L., Fontani, F., Rivilla, V. M., et al. 2018, MNRAS, 478, 3693

To test the linearity of H¹³CN/HC¹⁵N and HN¹³C/H¹⁵NC

Laura Colzi Reference: Colzi, L., Fontani, F., Rivilla, V. M., et al. 2018, MNRAS, 478, 3693

16O/18O Galactic chemical evolution

Intermediate and massive stars destroy ¹⁸O rather than produce it. In this case nova are not important to produce ¹⁸O.

Laura Colzi **Reference: Colzi, L., Fontani, F., Rivilla, V. M., et al. 2018, MNRAS, 478, 3693** 20/40

18O/¹⁷O Galactic chemical evolution

Laura Colzi **Reference: Colzi, L., Fontani, F., Rivilla, V. M., et al. 2018, MNRAS, 478, 3693** 20/40