

28th-31st October

Topical Overview on Star Cluster Astrophysics

* Luminosity: $\sim 10^{40}$ erg/s

Requirements

- * Luminosity:
- ***** Spectrum:

~ 10^{40} erg/s $Q_{\rm inj,Gal} \propto E^{-2.3}$

7 -2s-E^{2.7}

Requirements

- * Luminosity:
- ***** Spectrum:
- * Anisotropy:

***** Composition:

 $\sim 10^{40} \, \mathrm{erg/s}$ $Q_{\rm inj,Gal} \propto E^{-2.3}$ * Maximum energy: $E_{\max,p} \gtrsim 10^{15} \,\mathrm{eV}$ $\sim 10^{-3} @ 10 \,\mathrm{TeV}$

few anomalies w.r.t. Solar

SNR-CR connection: an historical overview

- 1934 Baade & Zwicky were the first to mention SNRs as sources of CRs, but arguing against them because CRs where thought to be extragalactic.
- 1942 Alfvén theorised the existence of MHD waves
- * 1949 E. Fermi proposed stochastic acceleration for CRs (II order acceleration)
- 1964 Ginzburg & Sirovatskii made the argument for SNRs as sources of Galactic CR in the 60's in a more quantitative form (10% kinetic energy needed to be converted in CRs).
- '70 Many authors apply Fermi's idea to SNR shocks (I order acceleration) [Axford et al. 1977; Bell 1978; Blandford & Ostriker 1978; Krymskii 1977; Skilling 1975]
- Observational evidences:
 - 1949: First radio observation of SNR (~300 sources known today)
 - 1995: First non-thermal X-ray emission detected from SN1006 by ASCA (Since 2000: Chandra and XMM-Newton)
 - 2001: first detection of shell type SNR in γ-rays by HEGRA

Baade & Zwicky

V. L. Ginzburg

Why SNRs are so popular?

- Enough power to supply CR energy density (~10% of the explosion energy) *
- Spatial distribution of SNRs compatible with the CR distribution *
- Presence of non-thermal emission in SNRs *
- A solid theory applicable to SNR shocks (DSA = *diffusive shock acceleration*) *

Unsolved issues:

Unsolved issues:

No evidence of acceleration beyond ~100 TeV even in very young SNRs +

> for a pion decay process if $E_{\rm max\,,proton} \simeq 1 \,{\rm PeV}$

Unsolved issues:

- No evidence of acceleration beyond ~100 TeV even in very young SNRs Predicted gamma-ray spectrum does not match the observed ones +

Prediction from test particle theory

 $E_{\rm max\,,proton} \simeq 1 \,{\rm PeV}$

Unsolved issues:

- No evidence of acceleration beyond ~100 TeV even in very young SNRs
- Predicted gamma-ray spectrum does not match the observed ones
- Escaping from sources not fully understood

Unsolved issues:

- Predicted gamma-ray spectrum does not match the observed ones Escaping from sources not fully understood
- No evidence of acceleration beyond ~100 TeV even in very young SNRs
- Spectral anomalies (p, He, CNO have different slopes)

Proton and He spectra requires different injection slope

"Bumps" in the proton spectrum suggests the existence of different source types

Unsolved issues:

- No evidence of acceleration beyond ~100 TeV even in very young SNRs Predicted gamma-ray spectrum does not match the observed ones Escaping from sources not fully understood
- + + +
- Spectral anomalies (p, He, CNO have different slopes)
- Anomalous CR chemical composition cannot be easily explained +

²²Ne/²⁰Ne ratio

Unsolved issues:

- Predicted gamma-ray spectrum does not match the observed ones Escaping from sources not fully understood
- No evidence of acceleration beyond ~100 TeV even in very young SNRs
- Spectral anomalies (p, He, CNO have different slopes)
- Anomalous CR chemical composition cannot be easily explained +

Incorrect/incomplete models for SNRs?

Looking for additional sources?

The role of star clusters

The role of star clusters

Recently several massive star clusters have been associated with gamma-ray sources

Cygnus Cocoon HAWC coll. Nat. Astr. (2020)

Westerlund 1; HESS coll. A&A (2022)

-3

-4

What power Stellar Clusters?

Phase	Source	Time-sca
$t \lesssim 3 \mathrm{Myr}$	MS stellar winds	$t \gtrsim My$
$3 \mathrm{Myr} \lesssim t \lesssim 7 \mathrm{Myr}$	WR stellar winds	$t \sim 10^5$
$3 \text{ Myr} \lesssim t \lesssim 30 \text{ Myr}$	SNe	$t \sim 10^3 - 1$

Stellar cluster kinetic luminosity

$t \lesssim 3$ Myr: only stellar winds

$3 \text{ Myr} \leq t \leq 30 \text{ Myr}$: stellar winds + SNe

Size: Cluster core $\sim 1 \text{ pc}$ Termination shock $\sim 5 - 10 \text{ pc}$ Bubble $\sim 50 - 100 \text{ pc}$

Where does the acceleration occurs?

Possible acceleration mechanisms

- 1. Wind termination shock (I order)
- 2. SNR shocks (I order)
- 3. Magnetic turbulence (II order)

Propagation

Irrespective of the acceleration mechanism, particles escape from the bubble after being accelerated. A correct description of escape requires the knowledge of:

- Bubble size
- Magnetic turbulence
- Gas and radiation distribution (need for energy losses) *

$t \leq 3$ Myr: only stellar winds

$3 \text{ Myr} \leq t \leq 30 \text{ Myr}$: stellar winds + SNe

Questions we need to answer

- How many SCs there are in the Galaxy? Which is their mass distribution?
- Which is the stellar mass distribution for each cluster (especially at higher mass)?
 - How powerful are stellar winds? How much turbulence they drive?
 - How does the wind-blown bubble evolve in time?
 - How do SNRs evolve in the SC environment?
 - How efficient is the particle acceleration?
 - Which is the chemical composition inside the bubble?

Plan of the TOSCA workshop

 Gamma-ray observation of star clusters (today) Star clusters as cosmic ray factories (Tuesday morning) Stellar feedback (Tuesday afternoon) Stellar wind physics (Wednesday afternoon) Population properties (Thursday morning)

Plan of the TOSCA workshop

 Gamma-ray observation of star clusters (today) Star clusters as cosmic ray factories (Tuesday morning) THE MEETING!!! Stellar feedback (Tuesday afternoon) Stellar wind physics (Wednesday afternoon) Population properties (Thursday morning)

