The life cycle of star clusters in low-metallicity dwarf galaxies

with GRIFFIN: Galaxy Realizations Including Feedback From INdividual massive stars

Natalia Lahén

Postdoctoral Fellow, Max Planck Institute for Astrophysics nlahen@mpa-garching.mpg.de

With Thorsten Naab, Guinevere Kauffmann

Christian Partmann, Antti Rantala, Dorottya Szécsi, Peter H. Johansson, Jessica May Hislop, Stefanie Walch, Chia-Yu Hu, Alexandra Kozyreva

31 October 2024 TOSCA - Topical Overview on Star Cluster Astrophysics

100 pc

How did GCs form?

Simulations provide a view of clustered star formation beyond spatial and temporal scales accessible to state-of-the-art observations:

- How did GCs form in the clumpy structures of high-redshift galaxies?
 - Is their formation process simply an extreme example of normal star formation?
- How was the chemodynamical structure of GCs set? What role did massive stars play in chemical enrichment, ionisation and origin of massive black holes?
 - N-body and cloud-scale simulations at ~0.01 Z_O indicate
 >few % of cluster mass can end up in one massive object
 (stellar collisions, gas accretion; Reinoso+2023, Fujii+2024, Rantala+2024, original works by Portegies Zwart et al.)
 - How is material released by short-lived massive stars recycled within star cluster forming regions?

Sunrise arc at $z \sim 6$ with JWST/NIRCam (Vanzella+2022)

 $z\sim0$ NGC 1569 with young massive >5×10⁵ M $_{\odot}$ clusters (NASA,ESA / A. Aloisi STScI/ESA)

Compact star forming complexes at $z \sim 10.2$ (Adamo+24)

Modelling globular cluster formation in galactic environments

TOSCA - Topical Overview on Star Cluster Astrophysics

GRIFFIN Galaxy Realizations Including Feedback From INdividual massive stars

Low-metallicity (0.1 – 0.01 Z $_{\odot}$), gas-rich dwarf galaxy models with $10^7 - 10^8$ particles, 4 M $_{\odot}$ gas mass resolution

GADGET-3 based tree/SPH code SPHGal (Hu+ 14,16,17):

- Multiphase ISM: non-equilibrium cooling with a chemical network down to 10 K (H, H⁺, H₂, C⁺, CO, O) + metallicity-dependent cooling at high temperatures
- Star formation: Jeans threshold, IMF sampled stars-by-star between 0.08-500 M $_{\odot}$ (Lahén+23)
- Feedback from individual stars (Geneva + BoOST models):
 - FUV interstellar radiation field with shielding by dust and gas (HEALPIX+TREECOL), photoionisation
 - Enrichment element-by-element & channel-by-channel: stellar winds, core-collapse SNe, pair-instability SNe, AGB winds

Hu+2014,2016,2017; Lahén+2019,2020ab,2022,2023,2024ab; Steinwandel+2020; Hislop+2022; Szakacs+2022; Bisbas+2022; Sarbadhicary+2024; Elmegreen & Lahén 2024; Fotopoulou+2024; Partmann+2024

31 October 2024

Simulated star cluster populations in starburst dwarf galaxies

Simulated star cluster populations in starburst dwarf galaxies

Power-law slope of the cluster mass function regulated by pre-supernova stellar feedback (Ma+18, Lahén+20a,24, Garcia+23, Andersson+24; for cold clouds see Fotopoulou+2024)

GC-mass clusters form <u>hierarchically</u>, with <u>high central densities</u>, <u>rotating</u>, with <u>rapid</u> <u>centrally concentrated self-enrichment</u> due to winds of massive stars (Lahén+20ab,24) → toward chemically discernible multiple populations in almost uniform age clusters

See e.g. L. Lancaster´s work

Lahén+2020a, 2024a

31 October 2024

Accurate collisional dynamics in star clusters with KETJU

How to account for two and few-body dynamics:

Publicly available KETJU-module (Rantala+17, Mannerkoski+23) in a nutshell:

- Select region(s) of space where you need higher accuracy in gravitational interactions:
 - center at every $m_* > m_i$; here m_i = 3 M $_{\odot}$
 - radius: $n \times$ grav. softening length; here 0.03–0.3 pc
- KETJU uses three numerical recipes in the algorithmically regularized MSTAR library
 (Rantala+20) to guarantee user-specified accuracy without gravitational softening:
 - > Time-transformed equations of motion (incl. optional post-Newtonian corrections)
 - Minimum spanning tree coordinate system
 - Gragg-Bulirsch-Stoer extrapolation technique combined with leap-frog integrator

Antti Rantala, Christian Partmann

Lahén+2024b, arXiv:2410.01891 Partmann+2024, arXiv:2409.18096

First results: quiescent dwarf galaxies, Z=0.01 Z_{\odot} , M_{vir} =4×10¹⁰ M_{\odot} , $M_{cluster}$ up to ~1000 M_{\odot}

Lahén+2024b, arXiv:2410.01891

First results: quiescent dwarf galaxies, Z=0.01 Z_{\odot} , M_{vir} =4×10¹⁰ M_{\odot} , $M_{cluster}$ up to ~1000 M_{\odot}

First results: quiescent dwarf galaxies, Z=0.01 Z_{\odot}, M_{vir}=4×10¹⁰ M_{\odot}, M_{cluster} up to ~1000 M_{\odot}

~65% of clusters disrupt by age of 100 Myr

 \rightarrow SNae in clusters reduced by a factor of >2 compared to softened simulation

Lahén+2024b, arXiv:2410.01891

KETJU+SPHGal: star cluster mass-loss and size-growth in a galactic environment

Examples: $500 - 1000 \text{ M}_{\odot}$ clusters in a dwarf galaxy

Size-evolution and mass-loss rapid but not necessarily destructive

Lahén+2024b, arXiv:2410.01891

TOSCA - Topical Overview on Star Cluster Astrophysics

KETJU+SPHGal: (low-mass) star cluster population in a low-metallicity dwarf galaxy

Rapid cluster evolution seen as reduction in the measured "cluster formation efficiency" = "clustered fraction at certain age" = cluster formation rate/SFR

• After 10—100 Myr of evolution, ~10% of all stars reside in bound >100 M $_{\odot}$ star clusters

Lahén+2024b, arXiv:2410.01891

KETJU+SPHGal: (low-mass) star cluster population in a low-metallicity dwarf galaxy

Rapid cluster evolution seen as reduction in the measured "cluster formation efficiency" = "clustered fraction at certain age" = cluster formation rate/SFR

• After 10—100 Myr of evolution, ~10% of all stars reside in bound >100 M_{\odot} star clusters

SN clustering is reduced compared to softened simulation

Still, cluster evolution has only a minor impact on galactic scales in an isolated, quiescent dwarf galaxy

Early stellar feedback clears the clusters of gas (photoionization, stellar winds, can be external!)

SFR, gas outflow rate, SN and wind mass outflow rate...

Lahén+2024b, arXiv:2410.01891

KETJU+SPHGal: Mass-size evolution

Around m_i>3 M $_{\odot}$ not softened

Lahén+2024b, arXiv:2410.01891

KETJU+SPHGal: Mass-size evolution

Around m_i>3 M $_{\odot}$ not softened

Softened gravity (0.1 pc)

Lahén+2024b, arXiv:2410.01891

Massive star cluster formation with KETJU: R136 in Tarantula to scale

Crowther+2016, 2024, Shenar+2023

HII region NGC 2070: 2-4 Myr $M_* \leq 1e5 M_{\odot}$

R136: 1-2 Myr

(Higher metallicity)

★ 625 M_☉ (init. 150 M_☉)

□ > 100 M_☉
 ▲ > 50 M_☉

• > 8 M_{\odot}

Lahén+ in prep; see also Rantala+2024b & Fujii+2024

Massive star cluster formation with KETJU: R136 in Tarantula to scale

HII region NGC 2070: 2-4 Myr M∗ ≲ 1e5 M_⊙

R136: 1-2 Myr

Higher metallicity)

1 pc

= **0.5pc** R136 a1, a2, a3 > 150 M_☉ (not binaries?)

• > 8 M_{\odot} Lahén+ in prep; see also Rantala+2024b & Fujii+2024

Conclusions & outlook

Formation of star clusters up to > $10^5 M_{\odot}$ can be modelled in galactic environments while sampling the entire IMF (0.08 - 500 M_{\odot})

- Star clusters don't need to be point masses or simple stellar populations
- <u>Pre-SN feedback</u> is efficient: often disperses dense gas before SNe start (see also observations in Sarbadhicary,...,NL+24 subm.)

Avenues toward chemically and dynamically realistic simulated globular clusters:

- Various enrichment sources (to be done: binaries, more massive / supermassive stars)
- Collisional dynamics+hydro+feedback: stellar interactions (binaries, mergers, runaways, SMBH seeds?), long-term evolution, cluster disruption in a galactic and/or <u>cosmological</u> context

Thank you!

Star clusters with KETJU+SPHGal: code comparison

Star cluster, 10k stars, dense Plummer profile with initial r_{50%}=0.3 pc

Star clusters with KETJU+SPHGal: code comparison

Photoionization (PI) evacuates gas before SNe

Galaxy scale simulations of star cluster formation

Non-exhaustive list of simulations of cluster/clump formation including non-equilibrium chemistry and varying detail of stellar feedback including early stellar feedback (pre-SN):

- Cosmological conditions: Boley+ 09; Ricotti+ 16; Kimm+ 16; Ma+ 18; Phipps+ 20; Calura+ 22; Garcia+ 23; Sameie+ 23
- Idealized spiral arm / dwarf galaxy / dwarf galaxy starburst simulations: Dobbs+ 17/20; Lahén+ 20a/24; Li+ 22; Hislop+ 22; Andersson+ 24

Resolution to model feedback of individual (massive) stars increasingly common

More simulations of cluster formation in galaxies:

Bekki+ 01; Kravtsov & Gnedin 02; Bournaud+ 08; Kruijssen+ 11; Renaud+ 15; Li+ 17; Maji+ 17; Pfeffer+ 18; Hirai+ 21; Rieder+ 22; Reina-Campos+ 22; Lake+ 23; van Donkelaar+ 23; Gutcke 24