Massive Stars Ejected from Clusters

Sally Oey University of Michigan

Grant Phillips (UM) Irene Vargas-Salazar (UM) Julian Deman (UM) Caden Burkhardt (UM) Fiona Han (UM) Jan Eldridge (Auckland) Norberto Castro (UM/AIP) Mathieu Renzo (Flatiron/AZ) Edmund Hodges-Kluck (NASA/GSFC) Johnny Dorigo Jones (UM/CO)

The Runaways and Isolated O-Type Star Spectroscopic Survey of the SMC (RIOTS4) Lamb+ 2016

FIELD STARS from Oey+ (2004)28 pc clustering length~ 400 stars ~ 30% of OB stars

 $Q_{UBR} \le -0.84$ $B \le 15.21$ from Massey (2002)

\gtrsim 95% of field OB stars are ejected from clusters!

Vargas-Salazar, Oey+ 2020 cf, e.g., de Wit+ 2004; Gvaramadze+ 2012; Oey+ 2013

Median overdensities for j=8-10 nearest neighbors

- Nearest Neighbors
- Friends-of-Friends
- Stacked fields

OGLE *I-*band 81646

Examples of non-ejected candidates

Ejection Mechanisms

Originate from binaries or multiples

Supernova ejection (BSS)

A. Irrgang

Dynamical ejection (DES)

2-step ejection *Pflamm-Altenburg & Kroupa 2010*

Faster, more massive stars

Phillips, Oey+ 2024

Dynamical (DES) vs SN (BSS) Ejections

Hoogerwerf+ 2001

Slower, lower mass stars are faster

Gaia Proper Motions Phillips+ 2024; Dorigo Jones+ 2020; Oey+ 2018

DR3: 336 RIOTS4 field OB / OBe stars

PMs relative to local velocity field < 5' (90 pc), G < 18

median err = 16 km/s

Runaway: $v_{\perp} \ge 24$ km/s (i.e., 30 km/s space velocity) **Walkaway:** v_{\perp} < 24 km/s unbound

Massive Star classes: OB – OBe – WR – LBV – sgB[e]

Which types come from binary progenitors?

Classical OBe stars

Phillips, Oey+ 2024; Dorigo Jones+ 2020

cf. Sana+ 2022

Classical OBe stars

Binary population synthesis models: *Renzo+ 2019* binary.c

Classical OB and OBe stars Phillips, Oey+ 2024

Classical OB and OBe stars

Vargas-Salazar, Oey+ 2024, in prep

OB stars dominated by DES

OBe stars dominated by BSS

RV binary survey of RIOTS4 field targets in SMC Wing

Classical OB and OBe stars

Vargas-Salazar, Oey+ 2024, in prep

Primordial binaries = twins in circular orbits

N-body simulations: Oh & Kroupa 2016

DES vs BSS

Table 3 Numbers and Ratios of Walkaway and Runaway Field OB Stars				
	Numerator ^a	Denominator	Ratio	Model ^b
Runaway DES/BSS	119	82	1.5 ± 0.2	1.7
Total W/R	324	201	1.6 ± 0.1	1.8
BSS W/R	185	82	2.3 ± 0.3	2.3
DES W/R	139	119	1.2 ± 0.1	1.5

Notes.

^a Numbers of walkaways are corrected by a factor of 2.4 for incompleteness (see Paper II).

^b See the text and Table 4 for details about the model predictions.

Phillips, Oey+ 2024; Dorigo Jones+ 2020

Contrib to SMC OB pop

DES model - Oh & Kroupa 2016:

ejection fraction 0.2 walkaway:runaway 60:40 binary fraction 0.8

BSS model - Renzo+ 2019:

assume 50% ejected assume 2-step runaways = 0.2 post-SN walkaways

BPASS binary population synthesis model: BSS

Vargas-Salazar, Oey+ 2024, in prep

Binary OB and OBe stars in SMC Wing:

- Constraining M2 based on P, M1, ecc, i

OBe systems

Higher-mass BH systems expect long 1000-d periods NS : BH = ~ 40 : 60

 $\begin{array}{ll} \mbox{[M2002] 75061, B1e: } \mbox{M1} = 20 \mbox{ } \mbox{M}_{\odot}, & \mbox{M2} > 5 \mbox{ } \mbox{M}_{\odot} - \mbox{BH} \\ \mbox{76773, Be: } & \mbox{M1} = 24 \mbox{ } \mbox{M}_{\odot}, & \mbox{M2} > 9 \mbox{ } \mbox{M}_{\odot} - \mbox{BH} \\ \end{array}$

AzV 493: Hi-ecc, hot, massive Oe star w/BH candidate

Oey, Castro, Renzo+ 2023 $M1 = 50 + - 9 M_{\odot}$ $\log L/L_{\odot} = 5.83$ $T_{eff} = 42,000 \text{ K}$ e > 0.93 P = 7.3 yr? 14.6 yr? $v \sin i = 370 \text{ km/s}$ $v_{\perp} = 54 + - 11 \text{ km/s}$

Vargas-Salazar+ in prep

gray, light blue = overplotted from 2nd cycle

Chandra non-detection 2023-09-11 $L_x < 4 \times 10^{34} \text{ erg/s}$

Wolf-Rayet stars

preliminary

Burkhardt, Han, Oey+ in prep Han, Burkhardt, Oey+ in prep

LMC WR stars with usable Gaia DR3 data Excludes 12 stars in core of R136 due to crowding

Both DES and BSS ejections among single stars?

Wolf-Rayet stars

Burkhardt, Han, Oey+ in prep Han, Burkhardt, Oey+ in prep

WNh, O If*/WN, WNL moderately fast

hi-M, H-burning DES? cf. Maiz-Apellaniz+ 2018

WC, WN3/03

very fast, esp binaries lower-M post-MS BSS mass donors? *cf Renzo+ 2019, Pols 1994*

WNE

slowest, but still ejected lower-M, older

preliminary

Luminous Blue Variables Deman & Oey 2024

Hot stars with eruptions, circumstellar material

LMC, SMC LBV stars with usable Gaia DR3 data Catalog and Classes from *Agliozzo+ 2021*

Class 1: Dusty nebula ~ ejecta **Class 2**: No dusty nebula. "Stellar" free-free emission

Class 2 (no ejecta) are unaccelerated

Class 1 (with ejecta) are accelerated - BSS products

cf. Smith & Tombleson 2015; Aghakanloo+ 2017

Classical supergiant B[e] stars

Deman & Oey 2024

Dense, circumstellar disks with hot dust lower L than LBV

LMC, SMC sgB[e] stars with usable Gaia DR3 data Catalog from *Kraus 2019*

sgB[e] are faster than LBV Dominated by BSS?

 $L - v_{\perp}$: sgB[e] stars \neq LBVs

Clusters vs OB associations?

cf. 30 Dor e.g., Stoop+ 2024

Summary

- \gtrsim 95% of Field massive stars are ejected
 - DES dominate runaways; DES & BSS ~ similar for walkaways?

• Classical OBe stars : BSS binary mass gainers

- Kinematics, binary eccentricities
- 3 BH candidates, incl AzV 493 = extreme ecc, hot, hi-L, variable Oe
- Most WR are ejected
 - WC, WN3/O3 : post-MS mass donor BSS?
- LBVs with dusty nebulae = ejected; without = not ejected
- Classical sgB[e] : faster than LBVs BSS?