
Massive stays in OB associations

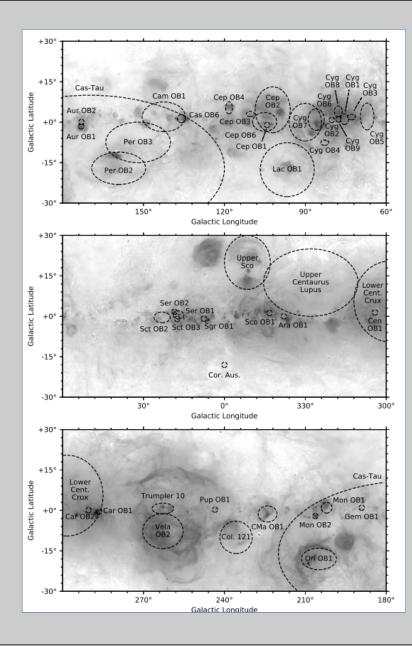
Sara R. Berlanas

TOSCA- Topical Overview on Star Cluster Astrophysics

Siena, 31st October 2024

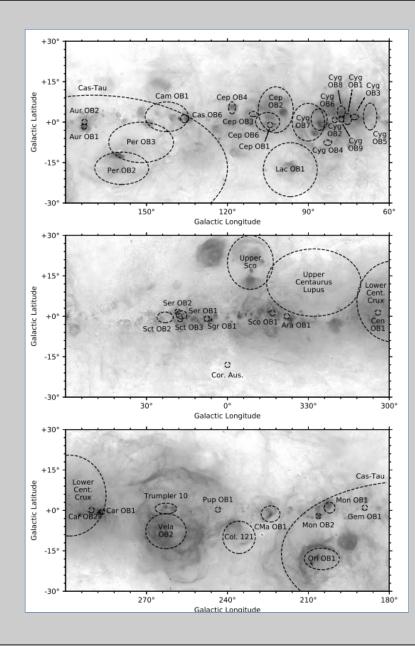
OB associations are groups of young stars with a stellar density lower than that of the Galactic field and that are not strongly associated with interstellar matter (Wright et al. 2023)

- Highly complex, with a high degree of spatial, kinematic and temporal substructure.
- Presence of subgroups with different ages and kinematics, young or open clusters, or bright central concentrations


- They originate as highly substructured systems without a linear star formation history, but with multiple clumps of stars that have since expanded and begun to overlap, producing the complex systems we observe today.
- Globally unbound and expanding: evidence for clear expansion patterns in the association subgroups, suggesting the subgroups were more compact in the past.

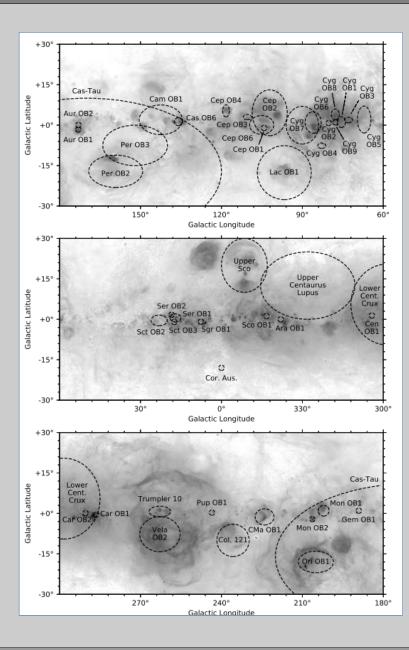
Well studied OB associations

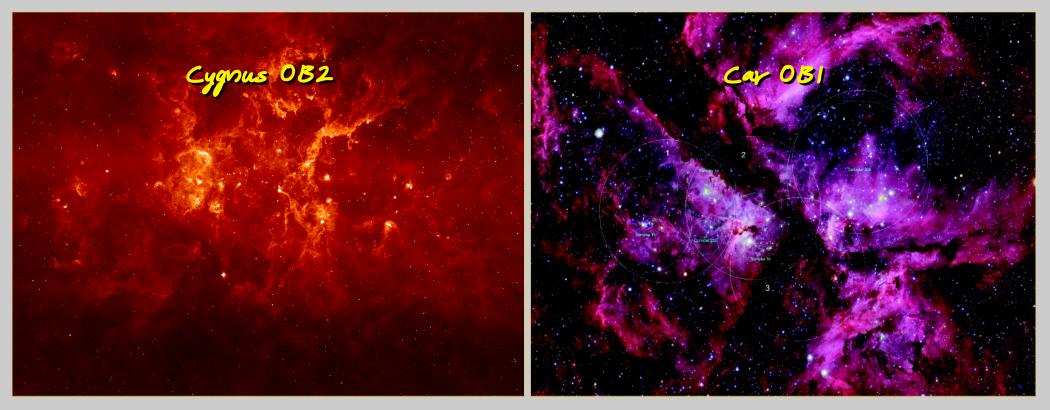
Name	1	b	Distance	Ref.	Age	Ref.	Clusters	Nebulae
	[deg.]	[deg.]	[pc]		[Myr]			
Well-studied O	B associa	ations:						
Sco-Cen: US	351.5	+20.0	143 ± 6	W18	10 ± 7	P16		
Sco-Cen: UCL	331.0	+12.5	136 ± 5	W18	16 ± 7	P16		
Sco-Cen: LCC	298.5	+5.5	115 ± 4	W18	15 ± 6	P16		
Ori OB1a	201.0	-17.3	~ 360	K18	8 - 12	B94	25 Ori	
Ori OB1b	205.0	-18.0	360 - 420	K18	2-8	B08	ε Ori	
Ori OB1c	211.3	-19.5	~ 385	K18	2-6	B08	NGC 1980, NGC 1981	
Ori OB1d	209.0	-19.5	~ 380	Z17	1-2	Z17	Orion Nebula Cluster	
Vela OB2	262.8	-7.7	411 ± 12	DZ 99	10 - 30	CG19	Gamma Vel, P Puppis	
Trumpler 10	262.8	+0.7	372 ± 23	DZ99	45 - 50	CG19		
Cyg OB2	80.2	+0.8	1350 - 1750	B19	1-7	W15		
High-confidence	OB ass	ociations	that have not	t been ext	ensively s	studied:		
Ara OB1	338.0	0.0	~ 1100	M73	~ 2	A87	NGC 6193	
Aur OB1	173.1	-1.6	~ 1060	M17	11-22	T10	NGC 1912, NGC 1960	Sh2-227
Aur OB2	173.0	+0.1	~ 2420	M17	~ 5.5	T10	NGC 1893, Stock 8	IC 410, IC 417
Cam OB1	142.5	+2.0	~ 800	M17	7 - 14	S85	NGC 1502	S202
Car OB1	286.5	-0.5	2300 ± 50	S06	1 - 10	D01	NGC 3293, Tr 14–16	NGC 3372
Car OB2	290.4	+0.1	~ 1830	M20	~ 4	G94		
Cas OB6	135.9	+1.3	~ 1750	M17	~ 4	T10	IC 1805, IC 1848	W3, W4, W5
Cas-Tau	169.0	-16.5	125 - 300	DZ99	~ 50	DZ99		
Cen OB1	304.2	+1.4	~ 1920	M17	6 - 12	K94	Stock 16	RCW 75
Cep OB1	104.2	-1.0	~ 2780	M17	1-5	C11	NGC 7380	
Cep OB2	102.1	+4.6	~ 730	M20	5	DZ99	Tr 37, NGC 7160	IC 1396
Cep OB3	110.4	+3.0	~ 700	M17	5-8	J96	Cep OB3b	S155
Cep OB4	118.3	+5.3	~ 660	M17	1-6	M68	B59	S171
Cep OB6	105.1	+0.1	270 ± 12	DZ99	~ 50	DZ99		
CMa OB1	224.0	-1.3	~ 1200	Z20	1 - 10	S18	NGC 2353, NGC 2327	IC 2177, Sh2-296
Collinder 121	235.7	-10.0	543 ± 23	DZ99	5	DZ99	Collinder 121	Sh2-306
Cyg OB1	75.5	+1.1	~ 1460	M17	6-8	R08	NGC 6913, IC 4996	
Cvg OB3	72.9	+1.9	~ 1830	M17	2 - 12	R08	NGC 6871, NGC 6883	
Cyg OB4	82.8	-7.6	~ 800	M17	~ 8.3	U01	,	
Cvg OB5	67.1	+2.1	~ 1610	R66				
Cyg OB6	86.0	+1.0	~ 1700	R66				
Cyg OB7	89.0	0.0	~630	M17	1 - 13	U01, W13		Northern Coalsack
Cyg OB8	77.9	+3.4	~ 1830	M17	4-6	M15		
Cyg OB9	77.7	+1.9	~960	M17	2-4	M15		Sh2-108
Gem OB1	189.1	+1.0	~1210	M20	~ 9	T10	NGC 2175	IC 443
Lac OB1	96.7	-17.6	368 ± 17	DZ99	2-25	C08		S126
Mon OB1	202.1	+1.0	~580	M17	1-10	F99	NGC 2264	NGC 2264, Mon. Ring
Mon OB2	206.3	-2.1	~1210	M17	2-15	T76	NGC 2244	Rosette Neb.
Per OB2	159.2	-17.1	296 ± 17	DZ99	1-10	A15	IC 348, NGC 1333	
Per OB3	147.0	-5.5	175 ± 3	DZ99	50	DZ99	α Per	
Pup OB1	243.5	+0.3	~2010	M17	~4	H72	NGC 2467	S311
1 up Obi	210.0	10.0	2010					
Sco OB1	343.3	$^{+1.2}$	1560 ± 35	Y20	1 - 10	D18	NGC 6231, Tr 24	G345.45+1.50,
Sct OB2	23.1	-0.4	~ 1600	M09	~6	S85	NGC 6705	Gum 55, IC 4628
Ser OB2	23.1	-0.4	~ 1000 ~ 1530	M05 M17	~0 8–13	T10	NGC 6611	M16, M17
Ser OB1 Ser OB2	18.2	+1.7	~ 1550 ~ 1600	M17 M17	~ 4.5	T10 T10	NGC 6604	Sh2-54
Sgr OB1	7.6	-0.9	~ 1000 ~ 1260	M17 M17	~4.0 5-8	S85	NGC 6530, Col. 367	M20
ogr Obi	1.0	-0.9	~1200	M117	0-0	300	HGC 0000, COL 007	14120


N. Wright 2020

High-confidence OB associations

Name	1	b	Distance	Ref.	Age	Ref.	Clusters	Nebulae
	[deg.]	[deg.]	[pc]		[Myr]	1001	Clasters	100000
	[a-8-]	[ac.8.]	[PC]		[]			
Well-studied Ol	R associa	tions.						
Wen-statien Of	D GOODCH	uuona.						
Sco-Cen: US	351.5	+20.0	143 ± 6	W18	10 ± 7	P16		
Sco-Cen: UCL	331.0	+12.5	136 ± 5	W18	16 ± 7 16 ± 7	P16		
Sco-Cen: LCC	298.5	+5.5	130 ± 3 115 ± 4	W18	15 ± 6	P16		
Ori OB1a	201.0	-17.3	~360	K18	8-12	B94	25 Ori	
Ori OB1b	201.0	-18.0	360-420	K18	2-8	B08	ε Ori	
Ori OB1c	211.3	-19.5	~385	K18	2-6	B08	NGC 1980, NGC 1981	
Ori OB1d	209.0	-19.5	~380	Z17	1-2	Z17	Orion Nebula Cluster	
Vela OB2	262.8	-7.7	411 ± 12	DZ 99	10-30	CG19	Gamma Vel, P Puppis	
Trumpler 10	262.8	+0.7	372 ± 23	DZ99	45-50	CG19	Gamma ver, 1 1 uppis	
Cyg OB2	80.2	+0.7 +0.8	1350 - 1750	B19	1-7	W15		
Cyg OD2	00.2	+0.0	1550 1150	1010		110		
High-confidence	OB are	ociation	that have no	heen ent	ensively	tudied.		
111gn-conjutence	OD 488	octations	that have not	ocen ext	ensivery i	nuticu.		
Ara OB1	338.0	0.0	~ 1100	M73	~ 2	A87	NGC 6193	
Aur OB1	173.1	-1.6	~1060	M17	11-22	T10	NGC 1912, NGC 1960	Sh2-227
Aur OB2	173.0	+0.1	~ 2420	M17	~5.5	T10	NGC 1893, Stock 8	IC 410, IC 417
Cam OB1	142.5	+2.0	~800	M17	7-14	S85	NGC 1502	S202
Car OB1	286.5	-0.5	2300 ± 50	S06	1-10	D01	NGC 3293, Tr 14–16	NGC 3372
Car OB2	290.4	+0.1	~1830	M20	~4	G94	1000 3233, 11 14-10	1400 3372
Cas OB6	135.9	+1.3	~1750	M17	~4	T10	IC 1805, IC 1848	W3, W4, W5
Cas-Tau	169.0	-16.5	125-300	DZ99	~50	DZ99	10 1805, 10 1848	wo, w4, wo
Cen OB1	304.2	+1.4	~ 1920	M17	6-12	K94	Stock 16	RCW 75
Cep OB1	104.2	-1.0	~ 1920 ~ 2780	M17 M17	1-5	C11	NGC 7380	RC W 15
Cep OB1 Cep OB2	104.2	+4.6	~ 2780 ~ 730	M17 M20	5	DZ99	Tr 37, NGC 7160	IC 1396
Cep OB2 Cep OB3	102.1	$^{+4.0}_{+3.0}$	$\sim 730 \\ \sim 700$	M17	5-8	J96	Cep OB3b	S155
Cep OB3 Cep OB4	110.4	+5.3	$\sim 700 \\ \sim 660$	M17 M17	1-6	M68	B59	S155 S171
	105.1		270 ± 12	DZ99	~ 50	DZ99	B39	51/1
Cep OB6 CMa OB1	224.0	+0.1 -1.3	~ 1200	Z20	~ 30 1-10	S18	NGC 2353, NGC 2327	IC 9177 Sh9 906
Collinder 121	224.0	-10.0	$^{\sim 1200}_{543 \pm 23}$	DZ99	5	DZ99	Collinder 121	IC 2177, Sh2-296 Sh2-306
			$^{-043 \pm 23}_{-1460}$	M17	6-8	R08		512-300
Cyg OB1 Cyg OB3	75.5	+1.1			2-12	R08	NGC 6913, IC 4996	
Cyg OB3 Cyg OB4	72.9 82.8	$^{+1.9}_{-7.6}$	~ 1830 ~ 800	M17 M17	~ 8.3	U01	NGC 6871, NGC 6883	
Cyg OB4 Cyg OB5				R66	~ 0.0	001		
	67.1	+2.1	~1610					
Cyg OB6 Cyg OB7	86.0 89.0	+1.0	~ 1700 ~ 630	R66 M17	1-13	U01, W13		Northern Coalsack
Cyg OB7 Cyg OB8	89.0 77.9	0.0 + 3.4	~ 630 ~ 1830	M17 M17	4-6	M15		Northern Coalsack
Cyg OB8 Cyg OB9	77.7	$^{+3.4}_{+1.9}$	~ 1830 ~ 960	M17 M17	4-6 2-4	M15 M15		Sh2-108
Gem OB1	189.1	$^{+1.9}_{+1.0}$	~ 960 ~ 1210	M17 M20	2-4 ~9	T10	NGC 2175	Sh2-108 IC 443
Lac OB1	189.1 96.7	$^{+1.0}_{-17.6}$	~ 1210 368 ± 17	M20 DZ99	$^{\sim 9}_{2-25}$	C08	NGC 2170	IC 443 S126
Mon OB1	202.1			DZ99 M17	2-25	F99	NGC 2264	NGC 2264, Mon. Ring
		$^{+1.0}$	~580					
Mon OB2 Per OB2	206.3 159.2	-2.1 -17.1	~ 1210 296 ± 17	M17 DZ99	2-15 1-10	T76 A15	NGC 2244 IC 348, NGC 1333	Rosette Neb.
Per OB2 Per OB3					50	DZ99		
	147.0	-5.5	175 ± 3	DZ99 M17	50 ~4	DZ99 H72	α Per NGC 2467	S311
Pup OB1	243.5	+0.3	~ 2010	M17	~ 4	n/2	NGC 2407	5511
Sco OB1	343.3	+1.2	1560 ± 35	Y20	1 - 10	D18	NGC 6231, Tr 24	G345.45+1.50,
505 0121	510.0		1000 1 00		1 10	210		Gum 55, IC 4628
Sct OB2	23.1	-0.4	~ 1600	M09	~ 6	S85	NGC 6705	5 am 00, 10 1020
Ser OB1	16.7	0.0	~1530	M17	8-13	T10	NGC 6611	M16, M17
Ser OB2	18.2	+1.7	~1600	M17	~ 4.5	T10	NGC 6604	Sh2-54
Sgr OB1	7.6	-0.9	~1260	M17	5-8	S85	NGC 6530, Col. 367	M20
								-

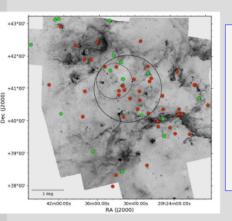

N. Wright 2020


OB associations pending deeper exploration

Name	1	b	Distance	Ref.	Age	Ref.	Clusters	Nebulae
	[deg.]	[deg.]	[pc]		[Myr]			a 200 a 10 - 12 - 22
2010/00/00/00/00/00/00								
OB association	s for whi	ch veru l	ittle is known					
010 00000000000	o jor un	cit cory .						
Aql OB1 (?)	37.3	-0.6	~ 2750	R66				
Cam OB3	147.0	+3.0	~ 2650	M17	~ 11	T10	Alicante 1	
Cas OB1	124.1	-1.4	~ 2010	R66	~ 10	L86		
Cas OB2	112.0	0.0	~ 2100	M17	~ 10	L86		NGC 7538, Sh1-57
Cas OB4	120.1	-0.3	~ 2300	M17	~ 8	L86		
Cas OB5	116.2	-0.5	~ 2010	M17	6-8	S85		
Cas OB7	122.8	+1.2	~ 2010	M17	~ 8	L86		Sh2-180
Cas OB8	129.2	-1.1	~ 2300	M17	~ 20	T10	NGC 581, NGC 663	
Cas OB9 (?)	113.5	-2.5	~ 800	R66				
Cas OB10 (?)	130.8	-6.3	~ 3800	R66				
Cas OB14	120.4	+0.7	~ 880	M17	< 10	T10		
Cen OB2	294.3	-1.0	~ 2100	R66	3 - 10	B14	IC 2944	IC 2948
Cep OB5	108.5	-2.8	~ 2090	H78	~ 10	L86		
Cir OB1	315.5	-2.8	~ 2010	M17			Pismis 20	
Cor. Aust. (?)	0.0	-18.0	~ 130	DZ99			Coronet cluster	NGC 6726, NGC 6729
Cru OB1 (?)	294.9	-1.1	~ 2010	M17	5-7	K94		IC 2944
Mon OB3	217.6	-0.3	~ 2420	M17	~ 7	T10		S287
Nor OB1	328.0	-0.9	~ 2780	M17				
Ori OB2 (?)	192.6	-11.6	~ 3240	R66				
Per OB1	134.7	-3.2	~ 1830	M17	8-11	M87	h and χ Persei	
							(NGC 869 & 884)	
Pup OB2 (?)	244.6	0.7	~ 3180	M17	~ 2	H72	Ruprecht 20	
Pup OB3	254.0	0.0	~ 1460	M17	~ 4	W63		RCW 19
Sco OB4 (?)	352.4	+3.4	~ 960	M17				NGC 6334, Sh2-10
Sct OB3	17.3	-0.8	~ 1330	M17	~ 4.5	T10		Sh2-50
Sgr OB4	12.2	-1.0	~ 1920	M17	< 10	T10		
Sgr OB5	359.9	-1.2	~ 2420	M20	6 - 12	S85		Sh2-15
Sgr OB6	14.2	+1.2	~ 1600	M17	< 10	T10		
Sgr OB7	10.7	-1.5	~ 1390	M17	4-5	T10		
Vela OB1	265.0	-0.7	~ 1460	M17	~ 20	T79	NGC 2659	
Vul OB1	60.3	+0.1	~ 1600	M17	10 - 16	T10	NGC 6823	NGC 6820
Vul OB2 (?)	64.7	+1.8	~ 4130	R66				
Vul OB4	60.5	+0.5	~ 800	M17	~ 10	T80		

N. Wright 2020

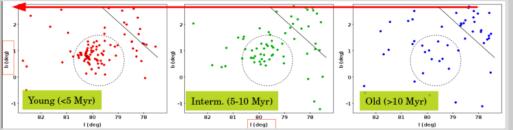
Two of the youngest Galactic OB associations



- They are **home to clusters and groups** with a large variety of massive stars, and are massive enough to contain 03 stars
- They are relatively nearby (at ~1.4-1.7 kpc Cyg OB2; ~3.2 kpc Car OB1) and contains hundreds of OB stars
- They are very young: age spread of 1 to 6 Myr in Cyg OB2; Car OB1 even younger
- In addition, Gaia DR3 is providing accurate parallaxes to derive precise values of luminosity and also proper motions: Redefine associations; Runaways after SNe explosions; Runaways vs rotational velocities

🧉 gaia

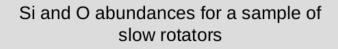
<u>us 052</u>

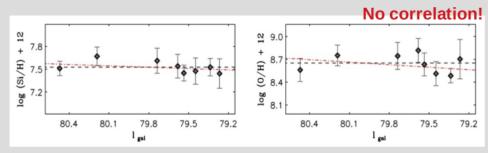

1. COMPLETING THE CENSUS OF OB MEMBERS

Spectral classification of new spectra: 42 new OB stars (<B3V)

... but the magnitude cutoff in the selection criteria introduces an **incompleteness** which is important mainly for those **faintest and most obscured** late O-type members.

Age distribution (T_{eff} from SpT calibrations + log L/L_{sun} assuming DM = 10.8)


Massive star formation has proceeded **from lower to higher Galactic longitudes**, from Cygnus OB9, continuing in the southern part of Cygnus OB2 and increasing in its northern part.


Berlanas et al. 2018a

2. LOOKING FOR SELF-ENRICHMENT

Could the correlation between ages and Galactic longitudes be associated with a chemical composition gradient?

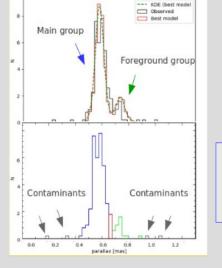
(that could evidence star formation from self-enrichment processes produced by pollution of the interstellar medium by successive generations of massive stars).

Our results indicate a **homogeneous** composition for our stellar sample, without evidence of a dependence on the Galactic longitude.

Test: O enrichment produced by stellar winds and SNe

The effect of self-enrichment by stellar winds and SNe is **small enough to be beyond the accuracy of our analyses.** We need to extend the sample and/or increase the quality of the spectra to detect it

Berlanas et al. 2018b

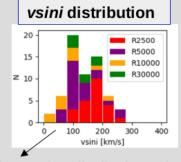

3. EXPLORING THE PARALLAX DISTRIBUTION

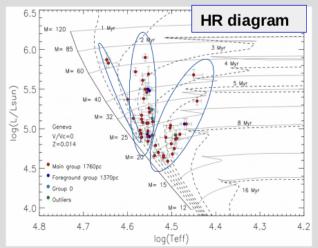
Gaia DR2 parallaxes — unique opportunity to inspect the internal structure of Galactic young open clusters and relatively nearby massive OB associations.

Cygnus OB2: 200 OB-stars suitable for our analysis (RUWE < 1.4)

We created a **parametrized model** to reproduce the *Gaia* DR2 parallax distribution.

Compared to the parallax distribution using the MCMC ensemble sampler **emcee**


We find two stellar groups superposed in Cygnus OB2 but separated by ~400 pc.


Berlanas et al. 2019

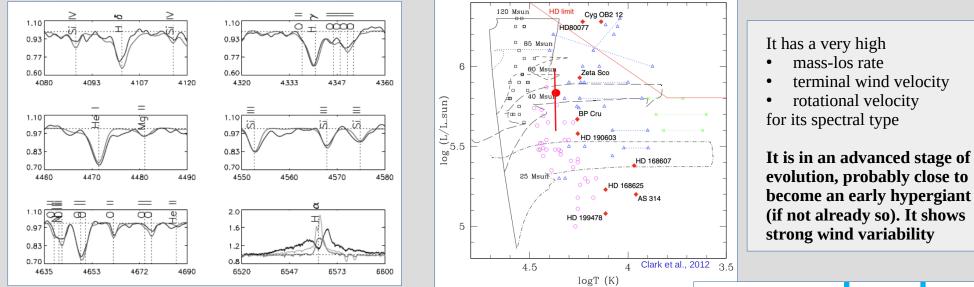
4. DETERMINING THE MAIN STELLAR PARAMETERS

We compiled new and already available spectra of the 77 O-type stars identified in Cygnus OB2: 63 are suitable for accurate spectroscopic analysis and 52 have reliable Gaia DR2 astrometry (RUWE < 1.4).

Similar to other distributions of O-stars except for the lack of very fast rotators

pm distribution

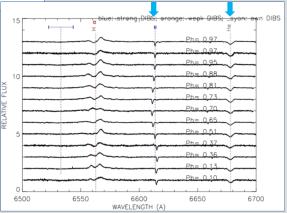
Runaway candidates!


From spectroscopic parameters and *Gaia* distances we find star formation during the last 1–6 Myr, with two main bursts centred roughly at 3 and 5 Myr. A third smaller group of stars at ~1.5 Myr containing the hottest stars of our sample may be due to interactive binaries.

Berlanas et al. 2020

Cypnus 052

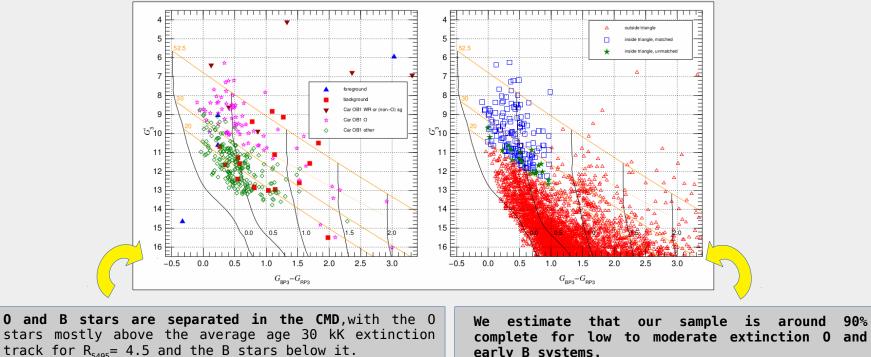
5. IDENTIFICATION OF EXTREME LUMINOUS OBJECTS


J20395358+4222506 is a very luminous, highly extincted B1 Supergiant. It is one of the most luminous stars in the Milky Way (*Herrero et al.* 2022)

J20395358+4222506 is an excellent **anchor object for stellar evolution and atmospheric modelling**

It has a mass of ~ 46 MO but it orbits around a companion with P~12.4 days and K ~ 90 km/s (semi-amplitude)

There is a high probability that the companion was the initial primary (and it may be a compact object) (Herrero et al. 2024, in prep)



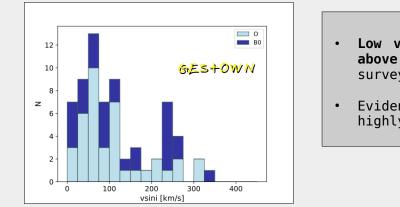
Car OBI

1. CENSUS

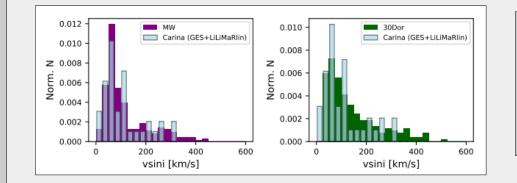
The updated census contains a total of **316 stars**, being 18 of them in the background and four in the foreground. Of the 294 stellar systems in Car OB1, 74 are of 0 type (54 apparently single or SB1), 214 are of non-supergiant B type and 6 are of WR or non-O supergiant (II to Ia) spectral class.

Within the sample, we identified 20 spectroscopic binary systems with an 0-star primary and another 18 with a B-star primary.

This is an indirect confirmation of the quality of the spectral classifications.


early B systems.

The location of the 19 green stars, all of them below the 30 kK extinction track, suggests that those missing objects are likely early-B stars.

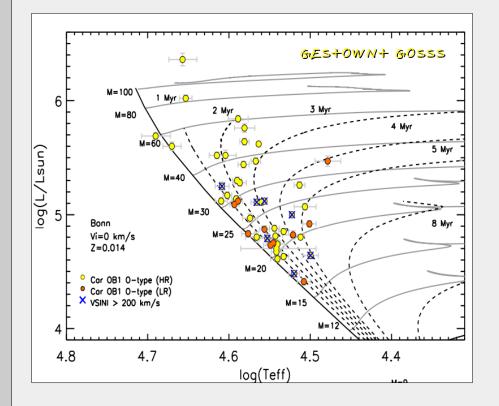

Car OBI

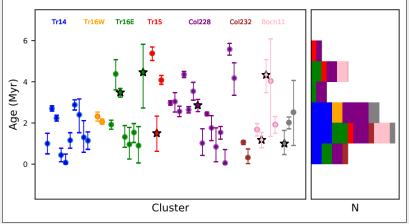
2. VSINI DISTRIBUTION

High-resolution spectroscopy for the maximum number of 0 stars in the census **is required to reach low rotational velocities and better disentangle the macroturbulence broadening: 38 0 stars** (from 54). This number represents a **70% fraction** of the total known population of 54 single 0-type stars present in our census.

- Low velocity peak at 60 km s⁻¹ and a tail of fast rotators above 200 km s⁻¹, as expected from previous results in other surveys.
- Evident lack of stars in the 75-100 km s $^{-1}$ bin, but it is highly attenuated when adding the sample of B0 stars.

Similar to other distributions of 0 stars, showing a bimodal structure although a shorter tail of fast rotators is found. Possible reason: relative small size of our sample and the young age of Carina, which may imply insufficient time for binary interactions to produce such an extended tail of fast rotators


Similar trend in Cyg OB2!


Berlanas et al. 2024 (imminent submission)

Cay OBI

3. STELLAR PARAMETERS AND THE HRD

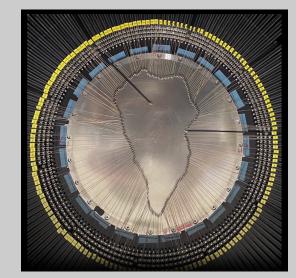
FASTWIND + **iacob-gbat** \rightarrow main spectroscopic parameters from their H and He lines. Benefiting from *Gaia* (DR3) and Molina-Lera et al. (in prep) we used group distances to derive M_v for the sample of 0 stars in Carina \rightarrow R,L, Msp. Using BONNSAI tool, we also derive Mev and Ages.

Age distribution peaking at 1 Myr. It confirms Car OB1, and specifically Trumpler 14, as one of the youngest regions of the Galaxy, as suggested by other authors.

Berlanas et al. 2024 (imminent submission)

Massive stars and large spectroscopic surveys

Massive stars and large spectroscopic surveys



But WEAVE and 4MOST are coming to complete (and improve) our view of Galactic massive stars!

WEA	VE
-----	----

	MOS fibres	Mini-IFUs (20)	LIFU
Diameter of field over which deployable (deg)	2.0	2.0	On-axis
Diameter of individual fibres (arcsec)	1.3	1.3	2.6
IFU field of view (arcsec)	-	11 x 12	90 x 78
Fibres per IFU (and filling factor)	-	37 (0.50)	547 (0.55)
Minimum separation on sky (arcsec)	60	60	-
Tumbler position (deg)	0 or 180	180	90
Configuration time (minutes)	55	<20	~1
Commissioning status	Ongoing	Ongoing	Complete
When available in open time	Not yet	Not yet	2023B

High-resolution

Blue arm

Three observing modes: MOS (multi-object spectroscopy), mIFU (mini integral-field units) and LIFU (large integral-field unit)

Mounted in June 2022 on the 4.2-m William Herschel Telescope, WEAVE is the **new widefield multi-object spectroscopic** facility

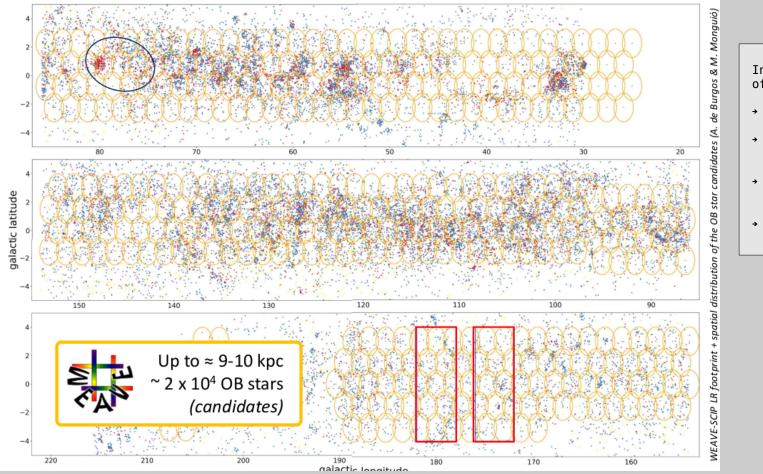
		Construction of the second			Contraction of the second second
Wavelength range (A)	3660-6060	5790-9590	4040-4650	4730-5450	5950-6850
Inter-CCD gap (A)	5491-5539	7590-7669	4525-4536	5302-5315	6412-6431
Spec. resolution for MOS, mIFUs	5000	5000	20000	20000	20000
Spec. resolution for LIFU	2500	2500	10000	10000	10000
Scale (A pixel ⁻¹)	0.30	0.48	0.076	0.090	0.11
WHT/WEAVE throughput (expected)	~ 0	.25		~ 0.15 to 0.20)

Low-resolution

Blue arm Red arm

Dual-arm (blue + red) spectrograph housed on one Nasmyth platform. It offers two possibles resolutions 5000 and 20000.

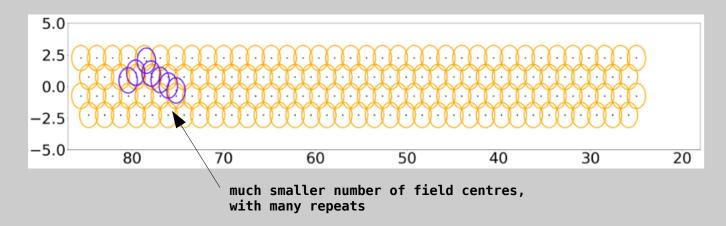
Red arm


The SCIP program (PI Janet Drew) is divided into three components:


- a LR survey (J. Drew) covering the northern Galactic plane: 488000 fib/hour 410 field centres, each to be observed once
- two HR components covering the Anticenter (M. Monguió & Marc del Alcázar) and the Cygnus-X region (A. Herrero & S.R. Berlanas): 280000 fib/hour ~213 tiles, covering a much smaller sky areas but with many repeats
- In addition there are 4 MOS-SV programs associated to SCIP (plus 1 mIFU and 1 LIFU programs)

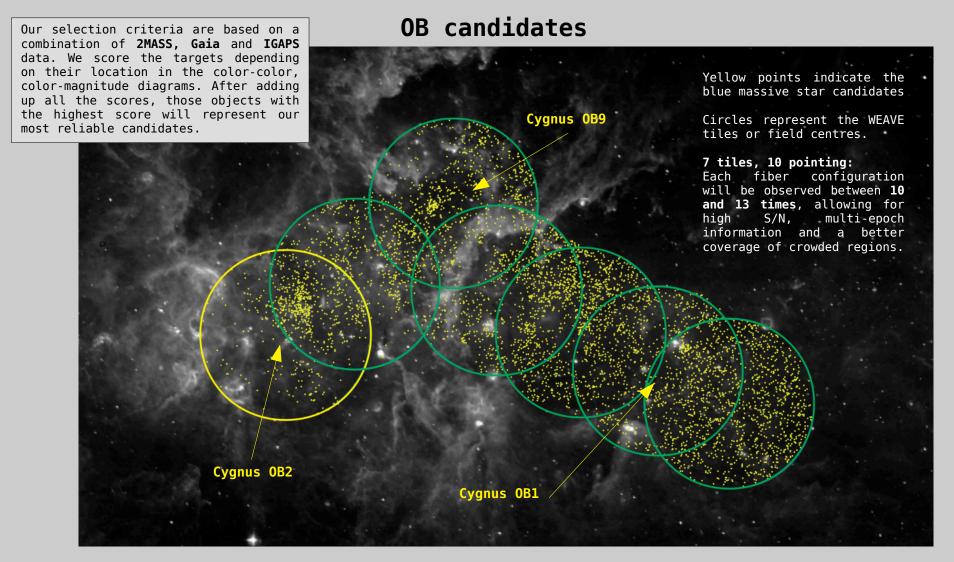
	• Large stellar samples for young/old extremes of stellar evolution
Aims ~	• Interstellar medium
	 3D extinction, law variation

SCIP-LR-OB



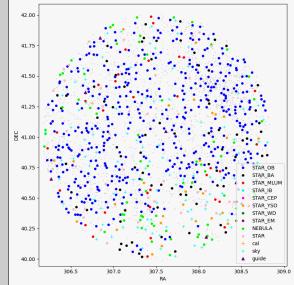
- → BA stars as Galactic probes
- OB stars to explore e.g. GAP close of the ZAMS
- → Stellar evolution: OB stars BA, RSG, YSO, WD/IB, Be, CEP
- → Poor seeing → PNe (LIFU)

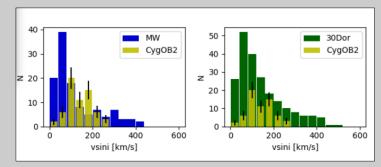
SCIP-HR CYG



HR Cygnus-X (mainly OB stars)

- Obtain accurate **abundances and spatial abundance patterns** for OB stars in the region (*extending the work by Berlanas 2018b*)
- Obtain rotational velocities and their distributions, checking that obtained in previous works (*Berlanas 2020*) for Cygnus OB2
- Determine binary fractions and **stellar multiplicity** (multi-epoch observations!)
- Detect **peculiar objects** (like possible GW progenitors or extreme BSGs and study them in detail)
- Determine accurate stellar parameters, particularly gravity, improving those obtained from the LR survey and allowing more precise radii and masses with the help of Gaia DR3 data (and forthcoming releases)
- Explore the **kinematical and dynamical** status of the stars in the region (*see Quintana et al. 2021,2022*)


We will include **BAF** stars (age extensión, ZAMS anchor point, kinematics, dynamics, structure), **BA** stars (TAMS characteristics), **PMS** and **YSO** (kinematics, star formation activity), **ISM** (abundances, kinematics), Individual targets (**Cepheids**, **WDs**, **RSGs**)

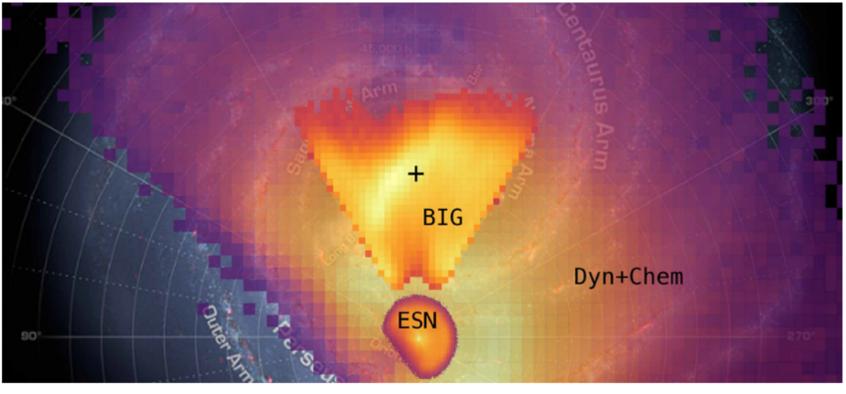

Expected early science

- <u>SV program focused on OB stars</u> (1LR+2HR MOS exposures in the same field centre: either Cygnus OB2 or the Rosette nebula)
 - → OB selection criteria
 - \rightarrow saturation limits
 - → LR vs HR (~30% OB candidates in common)
 - → Fine-tuning of classification and analysis pipelines

• Early science

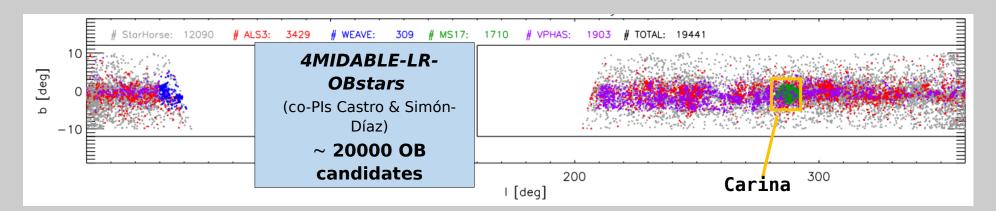
- → if Cygnus OB2: vsini distribution (lack of fast rotators?)
- \rightarrow if Rossete: HRD of the complete OB star+YS0 population
- <u>Commissioning test data</u>

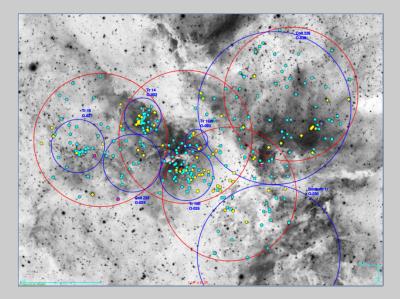
4MOST will be a fibre-fed spectroscopic facility **on the VISTA telescope** with a large field-of-view to survey a significant fraction of the southern sky in a few years. 4MOST will have a high multiplex being able **to simultaneously obtain spectra for ~2400 objects**.


Requirement	Baseline Specification				
Field-of-View in hexagon	4.1 degree ²				
Fibre multiplex per pointing	2436	MOST			
Smallest target separation	<17"				
Low-Resolution Spectrographs (LRS)		Illumination and electronics for the calibration and metrology			
Fibre multiplex	1624	Objective and folding M2 4MOST battle integrated M1 battle Adjustable counterweight Calibration U			
Spectral resolution	R>4000-7800	Detector for metrology			
Wavelength coverage	370–950 nm	Fiber postioner			
High-Resolution Spectrographs (HRS)	i	Cable Wrap Fiber Feed Fiber Stress			
Fibre multiplex 812		Relier Cryostat			
Spectral resolution	R>18,500	Electronics Cabinet			
Wavelength coverage	392.6–435.5, 516–573 &	Electronics High Resolution Spectrographs Control Cabinet			

4MOST Milky Way Disk and Bulge Low-Resolution Survey

4MIDABLE-LR will provide the largest spectroscopic follow-up of Gaia (adding key information to the Gaia RVS) and thereby allow us to view the Milky Way as a whole stellar system by providing a detailed 3D chrono-chemokinematical map of the Milky Way stellar disk and bar-bulge (Project PIs Cristina Chiappini & Ivan Minchev)




Credit: 4MIDABLE-LR-Team

OB sample included in 4MIDABLE-LR sub-survey, Co-IPs: S. Simón-Díaz & N. Castro

Gaia-ESO Survey: massive stars in the Carina Nebula

I. A new census of OB stars*

Gaia-ESO Survey: massive stars in the Carina Nebula

II. The spectroscopic analysis of the O-star population

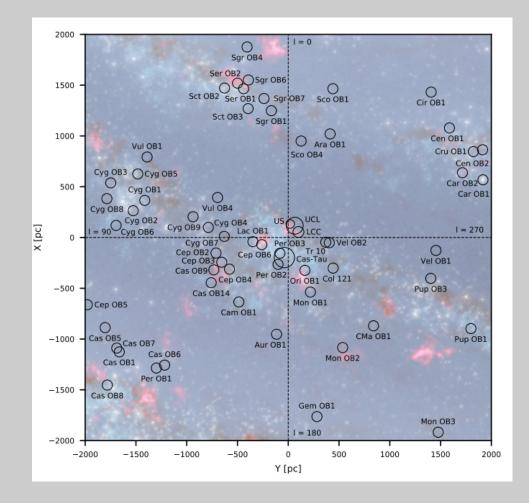
The MEIGAS project

The MEIGAS project (PI S.R. Berlanas): A multi-wavelength exploration of starforming regions, young clusters and associations

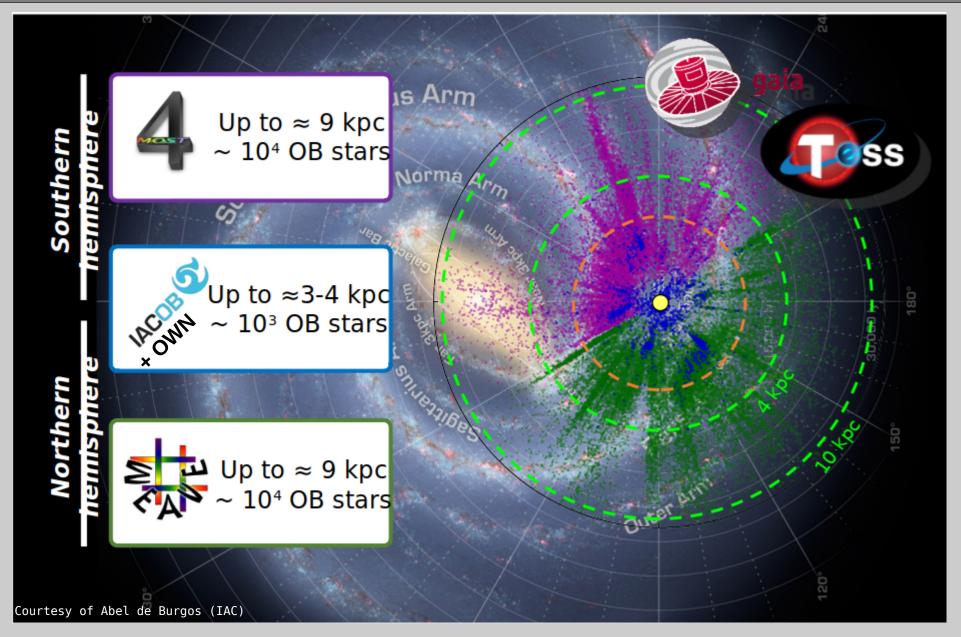
Conduct comprehensive studies in the major Galactic (and extragalactic) starforming regions, young clusters and OB associations.

Gaia + spectroscopic data from large spectroscopic surveys (e.g., GES, WEAVE, 4MOST, XSHOOTU, BLOeM) + dedicated observing proposals at different wavelength ranges (IR, UV, gamma and X-ray regimes)

Achieve crucial and complementary information to adequately characterize these regions and their stellar content, something imperative not only to complete their stellar census but to improve our understanding of star formation and poorly known evolutionary pathways of massive stars.


I. The universality of the vsini distribution of massive OB stars

Optical and IR spectroscopy in the *Cygnus-X complex* and the *Carina Nebula* (WEAVE, 4MOST + confirmed own IR observations) + **SMC** and **LMC** (X-ShootU, BLOeM)



The MEIGAS project

MEIGAS is a long-term large program that aims to perform deeper explorations even in the less known Galactic OB associations and extend research to extragalactic regions

Synergies

Thanks for your attention!

