Stellar Physics and The Chemical Enrichment of the ISM from Massive Stars

Marco Limongi

INAF – Osservatorio Astronomico di Roma, ITALY Kavli IPMU, University of Tokyo, JAPAN FPMU MATHEMATICS OF THE PHYSICS AND marco.limongi@oa-roma.inaf.it

in collaboration with

Alessandro Chieffi (INAF-IAPS, Italy)

and Lorenzo Roberti (Konkoly Obs. Hungary) Cristiano Ugolini (SISSA, Italy)

Why do we care about Massive Stars?

Massive stars play e fundamental role in the evolution of the Universe

- Produce of most of the heavy elements (especially those necessary to life)
- Light up regions of stellar birth \rightarrow induce star formation
- Contribute to the production of Neutron Stars and Black Holes
- Constitute a natural laboratory for the study of the physics of neutrinos
- Are sources of Gravitational Waves (collapse and remnants)
- Are the progenitors of long Gamma Ray Bursts

A good knowledge of the evolution of these stars is required in order to shed light on many astrophysical topical subjects

Massive Stars: Distinctive Features

Massive Stars $=$ A star in which the central temperature and density increase in such a way that degeneracy never takes place

$M \gtrsim 9 M_{\odot}$

- High temperatures are achieved that all the nuclear burning, from H to Si, go to completion and eventually a Fe core is formed \rightarrow production of all the elements with 4<Z<38
- Strong neutrino emission from pairs production \rightarrow dramatic reduction of the nuclear burning lifetimes
- Strong Mass Loss
- Chaotic evolution of the interior with formation of several and overlapping convective zones
- Fe core becomes unstable, collapses to nuclear density, rebounces and launches a shock wave that drives the explosion of the star \rightarrow Massive stars are the progenitors of Core Collapse Supernovae

Presupernova Evolution of a Massive Star: Chemical and Convective Hystory

Central burning \rightarrow formation of a convective core

Central exhaustion \rightarrow shell burning \rightarrow convective shell

Local exhaustion \rightarrow shell burning shifts outward in mass \rightarrow convective shell

Chemical Stratification @ PreSN Stage

The complex interplay among shell nuclear burning, timing and overlap of the convective zones determines in a direct way the final distribution of the chemical composition and the physical structure of the star $@$ presupernova stage

The Presupernova Stars

The complex interplay among the shell nuclear burning and the timing of the convective zones determines in a direct way the final physical and chemical structure

The mass loss history (RSG/WR) determines in a direct way the CCSN type

Models from Limongi and Chieffi (2018) Models from Limongi and Chieffi (2018)

INAF

STRUTH MAZIONALE

Core Collapse Supernova Explosion and Nucleosynthesis

- The Fe core becomes unstable, collapses to nuclear density, rebounces and through a sequence of events a shock wave is launched that drives the explosion of the star
- The propagation of the shock wave through the mantle of the star induces compression and heating \rightarrow some modification of the chemical composition produced during the hydrostatic burning stages is expected
- Such a modification is called Explosive Nucleosynthesis
- The modeling of the explosion of the star is mandatory to have information on:
	- The chemical composition of the ejected matter (chemical yields)
	- The initial mass-remnant mass relation
- At present detailed explosive nucleosynthesis calculations for core collapse supernovae are mainly based on artificially induced explosions

Induced Explosion

Different ways of inducing the explosion

- Piston (Woosley, Weaver and coll.)
- Thermal Bomb (Nomoto, Umeda and coll.)
- Kinetic Bomb (Chieffi & Limongi)
- Calibrated Neutrino Luminosity (Fryer, Janka)

IPMU MATHEMATICS OF THE PHYSICS AND

Solar Metallicity non Rotating Models: Composition of the Ejecta

- The elements Ne-Ca (synthesized only by massive stars) are coproduced with O. Some of them underproduced by more than a factor of 2 (Cl K) \rightarrow other sources
- The iron peak elements Ti-Ni are underproduced compared to O. SNIa fill the gap
- The elements Cu-Zr (weak component, synthesized mainly by massive stars) are coproduced with O. Kr-Rb slightly underproduced \rightarrow AGB fill the gap
- Elements heavier than Zr (main+strong component produced only by AGB stars) not produced

IPMU ESTIMATES OF THE DHYSICS

Low Metallicity non Rotating Models: Presupernova Evolution

Mass loss reduces dramatically as the metallicity decreases $\dot{M} \sim Z^{0.85}$

[Fe/H]=0 [Fe/H]=-2

Low Metallicity non Rotating Models: Presupernova Evolution

Low Metallicity non Rotating Models: Composition of the Ejecta

- Alpha elements show (as expected) the typical behavior of primary nuclei (negligible dependence on the initial metallicity)
- The odd elements (from N to Sc), on the contrary, show a typical secondary behavior

FPMU **INSTITUTE FOR THE PHYSICS 4**

All the heavy elements above Fe-peak are produced as secondaries (Zn-Zr start being produced above metallicity [Fe/H]=-1, the others are never produced)

ROTATION DRIVEN INSTABILITIES: TURBULENT SHEAR

Differential rotation induces chemical mixing r_2 ρ_2 v_2 Δr r_1 ρ_1 \overline{v}_1 $\left(\frac{\partial X_i}{\partial t}\right)_m = \left(\frac{\partial}{\partial m}\right)_t \left[(4\pi\rho r^2)^2 D\left(\frac{\partial X_i}{\partial m}\right)_t\right]$

$$
D_{\rm shear} = \frac{1}{3}vl = 2\frac{R(\partial\omega/\partial r)^2}{N_T^2/(K+D_h) + N_\mu^2/D_h}
$$

Edelmann+2017

ROTATION DRIVEN INSTABILITIES: MERIDIONAL CIRCULATION

Rotation makes the star oblates

Different heat content between the pole to the equator

Large-scale MERIDIONAL CIRCULATION develops

$$
\vec{\nabla} \cdot \vec{F}_{\text{rad}}(r, \vartheta, \varphi) = \rho \varepsilon_{\text{nuc}} - c_P \rho \frac{\partial T}{\partial t} + \delta \frac{\partial P}{\partial t} - \vec{U} \cdot (c_P \rho \vec{\nabla} T - \delta \vec{\nabla} P)
$$

Velocity of meridional circulation

FPMU **EXTREMATICS** OF THE PHYSICS A

Meridional circulation moves matter through the star and hence it can both transport angular momentum and induce mixing of the chemical composition

$$
D_{\rm mc}=\frac{1}{30}r\left|U\right|
$$

$$
\frac{\partial X_i}{\partial t}\bigg)_m = \left(\frac{\partial}{\partial m}\right)_t \left[(4\pi \rho r^2)^2 D \left(\frac{\partial X_i}{\partial m}\right)_n \right]
$$

Rotation Driven Mixing in Core H and Core He Burning

Internal evolution: mixing of core H burning products into the H-rich envelope

Internal evolution: mixing of core He burning products up to the tail of H-shell

 \bullet $12C$ synthesized in the He convective core diffuses up to the tail of the H-burning shell

- \bullet $12C$ synthesized in the He convective core diffuses up to the tail of the H-burning shell
- $12C$ is converted into CNO nuclei whose abundances are enhanced (the most abundant being $14N$)

- \bullet $12C$ synthesized in the He convective core diffuses up to the tail of the H-burning shell
- $12C$ is converted into CNO nuclei whose abundances are enhanced (the most abundant being $14N$)
- The fresh CNO nuclei, and in particular ¹⁴N, plus fresh He, are brought back toward the center.

- $12C$ synthesized in the He convective core diffuses up to the tail of the H-burning shell
- ¹²C is converted into CNO nuclei whose abundances are enhanced (the most abundant being ¹⁴N)
- The fresh CNO nuclei, and in particular ¹⁴N, plus fresh He, are brought back toward the center.
- The ¹⁴N that diffused back to the center is quickly converted into ²²Ne that becomes an efficient primary neutron source \rightarrow strong s-process nucleosynthesis activated

- \bullet $12C$ synthesized in the He convective core diffuses up to the tail of the H-burning shell
- \bullet $12C$ is converted into CNO nuclei whose abundances are enhanced (the most abundant being $14N$)
- The fresh CNO nuclei, and in particular ¹⁴N, plus fresh He, are brought back toward the center.
- The $14N$ that diffused back to the center is quickly converted into $22N$ e that becomes an efficient primary neutron source \rightarrow strong s-process nucleosynthesis activated
- Formation of a CNO ($14N$, $13C$, $15N$, $17O$) pocket in the radiative layers of the He core

- $12C$ synthesized in the He convective core diffuses up to the tail of the H-burning shell
- $12C$ is converted into CNO nuclei whose abundances are enhanced (the most abundant being $14N$)
- The fresh CNO nuclei, and in particular ¹⁴N, plus fresh He, are brought back toward the center.
- The $14N$ that diffused back to the center is quickly converted into $22N$ e that becomes an efficient primary neutron source \rightarrow strong s-process nucleosynthesis activated
- Formation of a CNO ($14N$, $13C$, $15N$, $17O$) pocket in the radiative layers of the He core
- The ¹³C and ¹⁴N engulfed by the He convective shell activate a strong ¹⁹F production

¹³C(α , n)¹⁶O ¹⁴N(n , p)¹⁴C

• The trends of N and F with the initial metallicity turn from a typical secondary to a typical primary behavior

FPMU ESTIMATES OF THE PHYSICS AND

- The trends of N and F with the initial metallicity turn from a typical secondary to a typical primary behavior
- The production of s-process elements is substantially enhanced with increasing the initial rotation velocity

- The trends of N and F with the initial metallicity turn from a typical secondary to a typical primary behavior
- The production of s-process elements is substantially enhanced with increasing the initial rotation velocity
- Large overproduction with respect to O (especially the s-only isotopes) at metallicities -2<[Fe/H]<0

- The trends of N and F with the initial metallicity turn from a typical secondary to a typical primary behavior
- The production of s-process elements is substantially enhanced with increasing the initial rotation velocity
- Large overproduction with respect to O (especially the s-only isotopes) at metallicities -2<[Fe/H]<0

OBSERVATIONAL REQUIREMENTS

- Primary behavior of N (at the lowest metallicities)
- Prevention of an overproduction of the s-only nuclei at metallicities -2<[Fe/H]<-1

Initial Distribution of Rotation Velocities (IDROV) Gaussian with $\langle v \rangle$ and σ

Initial Distribution of Rotation Velocities (IDROV) Gaussian with $\langle v \rangle$ and σ

• Alpha elements behave as primaries

Initial Distribution of Rotation Velocities (IDROV) Gaussian with $\langle v \rangle$ and σ

- Alpha elements behave as primaries
- N shows a negligible dependence on the initial metallicity (primary)

Initial Distribution of Rotation Velocities (IDROV) Gaussian with $\langle v \rangle$ and σ

- Alpha elements behave as primaries
- N shows a negligible dependence on the initial metallicity (primary)
- Elements between Zn and Zr display a secondary like behavior and always underproduced compared with O. At solar metallicity almost coproduced with O

Initial Distribution of Rotation Velocities (IDROV) $\;$ Gaussian with $\; \langle v \rangle \;$ and $\; \sigma \;$

- Alpha elements behave as primaries
- N shows a negligible dependence on the initial metallicity (primary)
- Elements between Zn and Zr display a secondary like behavior and always underproduced compared with O. At solar metallicity almost coproduced with O
- Elements heavier than Zr behave like primary elements but their overproduction remains always lower than that of O

IPMU MATHEMATICS OF THE PHYSICS AT

Summary and Conclusions

In the NON ROTATING case:

- Alpha elements show the typical behavior of primary nuclei (negligible dependence on the initial metallicity)
- The odd elements (from N to Sc), on the contrary, show a typical secondary behavior
- All the heavy elements above Fe-peak are produced as secondaries (Zn-Zr start being produced above metallicity [Fe/H]=-1, the others are never produced)

In the ROTATING case:

- The trends of N and F with the initial metallicity turn from a typical secondary to a typical primary behavior
- The production of s-process elements is substantially enhanced with increasing the initial rotation velocity
- Large overproduction with respect to O (especially the s-only isotopes) at metallicities -2<[Fe/H]<0
- The yields of almost all the elements are considerably increased in rotating models due to the larger He cores induced by the rotation driven mixing IPMU EXTREMATICS OF THE BHYSICS