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What are Wolf-Rayet stars?
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What are Wolf-Rayet stars?
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Wolf-Rayet (WR) stars are a
spectroscopic definition:

▶ optical spectra with strong and
broad emission lines

▶ named after French astronomers
Charles Wolf & George Rayet

▶ discovered in 1867
▶ first found in the Cygnus

constellation
(WR 134, WR 135, WR 137)

▶ nearest one: γ Vel (WR 11)

WR 124 (Credit: ESA/Hubble & NASA)



WN and WC stars
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WR stars are divided into two main spectral subclasses:
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WN stars:
▶ Strong nitrogen and

helium emission lines
▶ can have hydrogen

(SpT notation: WNh)

WC (and WO) stars:
▶ Strong carbon, oxygen,

and helium emission lines
▶ always hydrogen-free

▶ Emission-line spectra often formed completely in the wind, “cloaking” the star
▶ Analysis of the spectrum needed to uncover WR properties and influence
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WR subtypes
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early subtypes: higher ion stages, broader lines
(WN2-5, WC4-6) → higher wind velocities

late subtypes: lower ion stages, narrower lines
(WN7-11, WC7-9) → lower wind velocities

Typical values for subtypes at Z⊙:
WN2: 3000 km/s WO2: 5000 km/s
WN5: 1500 km/s WC5: 3000 km/s
WN10: 500 km/s WC9: 1200 km/s

subtype occurrence is related to metallicity (Z ):
→ distribution shifts to earlier types at lower Z
→ WN/WC ratio higher at lower Z
→ WR stars generally more rare at lower Z

Crowther (2007)



The Wolf-Rayet phenomenon
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classical WR starclassical WR star
▶ evolved massive star
▶ spectral type: WC
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Central star of a planetary nebulaCentral star of a planetary nebula
▶ evolved low-mass star
▶ spectral type: [WC]
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luminous, H-rich WR starluminous, H-rich WR star
▶ young massive star
(“O star on steroids”)
▶ spectral type: WNh
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X-Ray binary system SS433X-Ray binary system SS433
▶ BH accreting from companion
▶ lines from hot accretion disk



The Wolf-Rayet phenomenon
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▶ BH accreting from companion
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Why do we get emission-line spectra?
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WR emission lines: Emitting surface area larger than the adjacent continuum
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→ Detailed atomic physics are crucial
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In detail, various origins for the different lines:

▶ resonance scattering
▶ collisional excitation

▶ recombination
▶ continuum fluorescence

▶ dielectronic recombination
▶ line overlap/interactions



The WR mass-loss enigma
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Historical momentum problem:

LWR ≈ LOB, but ṀWR ≫ ṀOB

→ higher wind efficiency η = Ṁv∞
L/c

→ mCAK wind theory cannot explain this (η ≲ 1)

⇒ is radiative driving alone sufficient
to explain WR winds? 4.5
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O4III (HD 193682)

log Ṁ = -6.2
(Mahy et al. 2015)

O4I (HD 66811)

log Ṁ = -5.8
(Sander et al. 2017)

WN4 (WR 1)

log Ṁ = -4.5
(Hamann et al. 2019)

WN5 (WR 110)

log Ṁ = -4.4
(Hamann et al. 2019)

WC5 (WR 111)

log Ṁ = -4.6
(Sander et al. 2019)

Teff /kK

10204060100150200

log (Teff /K)

ZAMS
zero age main sequence

Possible alternative WR driving forces:
▶ strange-mode instabilities (e.g., Gautschy and Glatzel 1990, Wende et al. 2008)

↪→ but no coherent oscillations found in long-term monitoring (Moffat et al. 2008)

▶ convection close to or at the wind onset (Cantiello et al. 2009)

▶ super-chromosphere with Te > Trad (“Dick Thomas force” after Richard N. Thomas, 1949)
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log Ṁ = -5.8
(Sander et al. 2017)

WN4 (WR 1)
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The WR mass-loss enigma
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Monte Carlo Calculations: η > 1 as such is not a problem
▶ de Koter et al. (1997): R136 WNh winds have changing Fe/Ni ionization
▶ Springmann & Puls (1998): “frozen-in” (OB) vs. changing ionization (WR)

→ closure of “radial gaps” that would otherwise lead to photon “leakage”
⇒ opacity problem rather than momentum problem (Gayley et al. 1995)

Springmann & Puls (1998) Springmann & Puls (1998)



The WR mass-loss enigma
9

Monte Carlo Calculations: η > 1 as such is not a problem
▶ de Koter et al. (1997): R136 WNh winds have changing Fe/Ni ionization
▶ Springmann & Puls (1998): “frozen-in” (OB) vs. changing ionization (WR)

→ closure of “radial gaps” that would otherwise lead to photon “leakage”
⇒ opacity problem rather than momentum problem (Gayley et al. 1995)

Springmann & Puls (1998) Springmann & Puls (1998)

– Fe IV –

– Fe V –

– Fe VI –



The role of Fe M-Shell opacities
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However: To launch a WR wind by M-shell
opacities, it needs to start deep in the
optically thick atmospheres

Opacity calculation in the 1990s yielded a
major “bump” of line transitions for Fe
M-Shell ions (Fe IX-XVII)

▶ consequences throughout astrophysics,
including e.g. pulsation regimes

▶ quickly suspected to be important for WR
wind launching (Kato & Iben 1992; Pinnester & Eichler

1995; Nugis & Lamers 2002)

▶ first consistent model by Gräfener &
Hamann (2005) for a WC star

▶ Fe importance independently confirmed
by Vink & de Koter (2005)
(albeit their models did not include the M-shell ions)



The WR radius problem
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Combined HRD with Milky Way WR
analyses results:
▶ WNh stars close to the main sequence

as expected
→ could be H-burning or He-burning

▶ WNE and WC stars have no hydrogen
→ must be (at least) He-burning

▶ WNE and WC should sit on the
HeZAMS, but most do not

⇒ Wolf-Rayet Radius Problem:
Discrepancy between empirical parame-
ters and stellar structure models
→ similar results for other galaxies

and different metallicities
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The WR radius problem
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Two possible solutions:
▶ inflated hydrostatic radii
▶ deep wind launching (“dynamical inflation”)

→ coupling of structure and wind physics

Different radius definitions and multiple meanings for Teff:
▶ T∗ defined at τ ≫ 1

(typical choices: 20 or 100)

▶ T2/3 defined at the more common τ = 2/3

Problem:
For some purposes, T2/3 and R2/3 are more “robust”,
but T2/3 does not reflect the radiation field of a WR star
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Deep launching as a solution to the WR radius problem
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Optically thick WR winds (valid for most, but not all WRs):
Even the continuum is produced in expanding layers with v ≫ vsonic (e.g. Gräfener & Hamann 2004, Sander et al. 2020)

▶ inferred stellar radii more compact with HD velocity laws
▶ similar radius problems for (some) WNhs and LBVs



Quantitative spectroscopy of Wolf-Rayet stars
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Quantitative spectroscopy of WR stars is vital to understand
impact and evolution of evolved massive stars, e.g.
→ the remaining hydrogen content of WN-type stars

(e.g., Hamann et al. 1995, 2006)

→ non-homogeneity of WR winds
(e.g., Koesterke & Hamann 1998, Hillier & Miller 1999)

→ 12C(α, γ)16O rate from WC and WO stars
(e.g., Aadland et al. 2022)

→ mechanical and ionizing feedback to the ISM

Analysis of many WR stars also yield empirical Ṁ(L, Z , . . . )
(e.g., Nugis & Lamers 2000, Hainich et al. 2015, Shenar et al. 2019)
→ default in stellar evolution & population synthesis
→ dangerous extrapolation to unobserved regimes (e.g., Z < ZSMC)



Predictions from dynamically consistent atmospheres
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Theoretical approach using detailed model atmospheres to derive consistent v(r) and Ṁ
Gräfener & Hamann (2005, 2008), Sander et al. (2017, 2020, 2023)
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Additional Iteration Scheme:
▶ v(r) via integrating the hydrodynamic

equation of motion
▶ adjustment of Ṁ via boundary constraint

(e.g. total opacity conservation)
▶ concept goes back to Lucy & Solomon

(1970), but scalable implementations only
recently
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Insights on WR winds from dynamically-consistent atmospheres
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Dynamically-consistent atmospheres crucial to understand cWR stars:
▶ Crucial role of Fe M-Shell opacities in wind launching

(Gräfener & Hamann 2005; Sander et al. 2020, 2023)
▶ Strong non-monotonic behaviour of κF
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Breakdown of the CAK description in WR winds
17
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Failure of the CAK parametrization for cWR winds:
▶ optically thick, but supersonic layers
▶ optical depth parameter t not monotonic in τ or r
▶ multi-peak structure in the opacities not mapped



Modelling WR stars with WN-type composition
18

Model series: H-free WR stars
with WN composition

- variables: L/M, Z
- fixed He-ZAMS L(M)
- fixed T∗

Model sequences yield two
regimes with different trends:

- dense winds (≈LTE at Rsonic)

- optically thin winds
- transition correlates, but not

coincides with η ≈ 1
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(Ṁ
[M
�

yr
−1

])

2.0 Z�
1.5 Z�
1.0 Z�
0.5 Z�
0.2 Z�
0.1 Z�
0.05 Z�
0.02 Z�

Sander & Vink (2020)



Modelling WR stars with WN-type composition
18

Model series: H-free WR stars
with WN composition

- variables: L/M, Z
- fixed He-ZAMS L(M)
- fixed T∗

Model sequences yield two
regimes with different trends:

- dense winds (≈LTE at Rsonic)

- optically thin winds
- transition correlates, but not

coincides with η ≈ 1

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2
log

(− log (1 − Γe)
)

−11

−10

−9

−8

−7

−6

lo
g

(Ṁ
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Model series: Classical WR stars with WN-type composition
19

Comparison with traditional WR mass-loss recipes at Z⊙:
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Application of WR wind recipes
(typically if Xs  < 0.4)
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→ more tailored treatments needed



Insights: Wind driving and mass-loss rates of classical WR stars
20

New cWR-Ṁ from Sander & Vink (2020) and Sander et al. (2023):
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(Ṁ
[M
⊙

yr
−1

])

10

20

50

100

200

T
2
/3 [kK

]

Empirical results

MW H-free WN-s (Hamann et al. 2006, 2019)

MW H-free WN-w (Hamann et al. 2006, 2019)

MW WCs (Sander et al. 2012, 2019)

LMC H-free WNs (Shenar et al. 2019)

LMC WCs & WOs (Aadland et al. 2022)

SMC WRs (Hainich et al. 2015, Shenar et al. 2016)

Model sequences

20 M⊙,XH = 0.0,Z⊙
20 M⊙,XH = 0.2,Z⊙
20 M⊙,XH = 0.2, 0.5 Z⊙
12.9 M⊙,XH = 0.2,Z⊙
15 M⊙,XH = 0.0,Z⊙
20 M⊙,WC, 0.5 Z⊙

Models with D∞ = 10
20 M⊙,XH = 0.2,Z⊙
12.9 M⊙,XH = 0.2,Z⊙

Models with D∞ = 4
20 M⊙,XH = 0.2,Z⊙

AS

4.1

4.4

4.7

5.0

5.3

-5 -4 -3 -2
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▶ cWR winds scale fundamentally different than OB star winds
▶ cWR winds are launched deep in the optically thick atmosphere (at Te ≈ 200 kK)

▶ surprisingly shallow metallicity-scaling for dense winds: Ṁ ∝ Z 0.3

▶ strong L/M- and Z-dependent breakdown of Ṁ → consequences for observed WR pop.
▶ for constant L and M: Ṁ ∝ R3

crit ∝ Teff(τcrit)6



Limits of deep wind launching
21

Can we explain all WR stars as compact stars with extended wind envelopes?
(i.e., is the radius problem solved?)

→ we obtain “hard boundaries” for wind launching from the hot iron bump
→ late WR subtypes should always have huge emission lines → not observed
⇒ there is probably also a regime with inflated hydrostatic radii

Teff(τR = 2/3)
T∗(τR,c = 20)

Teff(τcrit)
Te(Rcrit)

M∗ = 12.9 M⊙,XH = 0.2,D∞ = 10

AS

-6

-5

-4

20 60 100 140 180 220

T [kK]

lo
g(

Ṁ
[M
⊙

yr
−1

])

data from Sander et al. (2023)

R2/3

1.01 1.1 2 10 100 1000
r/R∗

arad

acont

apress

athom

AS

-1

0

1

-2 -1 0 1 2 3

log (r/R∗ − 1)

lo
g

(a
/g

)

Sander et al. (2023)



Abundance-dependency of Wolf-Rayet winds
22

For constant stellar parameters: Ṁ expected to decrease for WNh → WN → WC
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Similar Ṁ-behaviour for all cWR subtypes

For the same L, M, R:
▶ WNh stars have slightly higher Ṁ
▶ WC stars have slightly lower Ṁ
→ Different budget of free electrons (→ Γe)

→ Contrary to currently employed recipes
→ Ṁ set by Γe and κFe, higher C & O

abundances in WCs affect mainly v∞
(unless there is an inflated radius regime for late-type WCs)
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(Ṁ
[M
⊙

yr
−1

])Metallicity-dependence of WNs and WCs:

MWLMCSMC

AS

WN

WC

106.17 L⊙
40 M⊙

105.45 L⊙
11.5 M⊙

-8

-7

-6

-5

-4

-1.0 -0.5 0.0 0.5

log(Z/Z⊙)

lo
g(

Ṁ
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Effect of leftover hydrogen envelopes
23

Leftover hydrogen in WN
stars: higher Γe
→ enhances Ṁ for fixed
stellar parameters

Real situation more
complex
→ competitive process
- free electron budget
- additional gravitational

pull
- structural response

(radius expansion,
shell-burning)

100110120130140
Teff(Rcrit) [kK]

−4.8

−4.6

−4.4

−4.2

−4.0

−3.8

lo
g(

Ṁ
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Ṁ
[M
�

yr
−1

])

20 M� He core, log L/L� = 5.7, Z = Z�

7.4 M� envelope, XH = 0.2, log L/L� = 5.8
7.4 M� envelope, XH = 0.2
1.0 M� envelope, XH = 0.2

no envelope

1.2 1.5 2.0 2.5
Rcrit [R�]

Sander et al. (in prep)



WR mass-loss rates and mechanical feedback
24

Mass-loss rates typically on the order of
10−5 . . . 10−4 M⊙ yr−1

Mechanical feedback: Lmech = 1
2Ṁv2

∞

→ v∞ can be more decisive than Ṁ
→ earlier subtypes typically more influential

Diagnostic issue:
optical emission lines can underestimate v∞
Example: opt: ∼1700 km/s, UV: ∼2500 km/s (Lefever et al. 2023)

↪→ factor of two in Lmech
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Vieu et al. (2024)

Cyg OB2: → see talk by Thibault Vieu
and poster by Cormac Larkin

SpT log Ṁ v∞ log L/L⊙ log Lmech Source

WR 102hb WN9h −4.52 400 km/s 6.42 36.5 Liermann et al. (2010)

WR 114 WC5 −4.51 3200 km/s 5.39 38.3 Sander et al. (2019)



cWR winds across the mass ladder
25

Are massive and low-mass WO winds similar?
→ literature analysis (10 [WO], 3 [WC], 2 [WC]-PG 1159) with distance updates
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Ṁ ≈ 10−7 M⊙ yr−1

v∞ ≈ 3000 km/s
→ Lmech ≈ 1036 erg/s

Ṁt ∝ Ṁ
v∞

L3/4

▶ Massive and low-mass objects mix in the Ṁt(T2/3) plane
▶ reasonable agreement with observed and theoretical v∞(T2/3) trend
▶ WD merger Pa 30 aligns with WO Ṁ(L) trend despite v∞ ≈ 15 000 km s−1



(Partially) stripped, non-WR stars
26

Varsha Ramachandran

Winds in the regime between classical
Wolf-Rayet stars and subdwarfs
▶ “compact” stripped stars

→ Ṁ ≲ 10−9 (Götberg et al. 2023)

▶ “bloated” stripped stars
→ hidden in the OB population
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Search for “suspicious” UV and optical signatures:
▶ Ramachandran et al. (2023): Discovery of an

intermediate-mass stripped star in the SMC (opt. only)
▶ Ramachandran et al. (2024, XShootU VIII): Three

partially stripped stars with UV+optical spectra
▶ First Ṁ determination for these kind: Ṁ ≈ ṀVink 2017

→ severe implications for binary evolution models
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Very Massive WNh Stars
27

H-burning stars close to the Eddington Limit:
▶ Transition in Ṁ-behaviour → Gautham’s talk
▶ significant impact to young massive populations
▶ Careful: Not every WNh is very massive or H-burning

Crowther & Walborn (2011)

Vink et al. (2011)

Bestenlehner et al. (2020)



Wolf-Rayet stars as sources of ionizing feedback
28

Number of photons beyond an ionization edge:

Qedge =
∞∫

νedge

Fν

hν
dν

λedge νedge

Q0 aka QH I 911.6 Å 13.6 eV
Q1 aka QHe I 504.3 Å 24.6 eV
Q2 aka QHe II 227.9 Å 54.4 eV

High T∗ and L → strong sources of QH I
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QHe II crucially dependent on ṀWR
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Wolf-Rayet stars and He II ionizing flux
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Characteristic “transformed mass-loss rate” Ṁt for regime that yields He II ionizing flux

Model sequences

20 M⊙,XH = 0.0,Z⊙
20 M⊙,XH = 0.2,Z⊙
20 M⊙,XH = 0.2, 0.5 Z⊙
12.9 M⊙,XH = 0.2,Z⊙
15 M⊙,XH = 0.0,Z⊙
20 M⊙,WC, 0.5 Z⊙

Models with D∞ = 10
20 M⊙,XH = 0.2,Z⊙
12.9 M⊙,XH = 0.2,Z⊙

Models with D∞ = 4
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Multi-D wind modelling effects
30

Current insights on ṀWR all stem from
spherically symmetric models → 3D effects?

Velocity distribution and averaged profile:

Moens (2022, PhD thesis)

1D approximations of 3D averaged profiles:
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Binaries and multiple systems
31

Wolf-Rayet stars are often not alone

Around 30. . . 40% of WRs are
observed in close binaries
→ no obvious metallicity-dependence
(Neugent & Massey 2019)

Most common: cWR + OB
(e.g. WR 133: WN5 + O9; WR 30: WC6 + O7.5)

Very massive stars: WNh + WNh
(e.g. WR43A: WN6h + WN6h)

Some objects resolve into higher multiple systems

Requires sufficient spectra:
▶ high-resolution
▶ multi-epoch
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Shenar et al. (2018)

Background Image Credit: NASA, ESA, and A. Feild (STScI)



How to produce WR stars?
32

Evolutionary paths towards WR stage still very
uncertain and debated.
▶ Intrinsic stripping challenged by lower wind Ṁ
▶ High multiplicity fraction among OB progenitors

But: Multiplicity is only part of a bigger puzzle
▶ WC stage requires intrinsic stripping of a WN
▶ Single WN stars in the SMC seem to require

self-stripping (e.g., Schootemeijer et al. 2024)

▶ Absence of long-period cWR binaries at lower Z
▶ No “smoking gun” SN progenitor

→ direct BH collapse seems common
The known WR population is likely a mixture of
objects with multiple origins.
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Summary: Wolf-Rayet Stars
33

WR = spectroscopic definition, but synonymously used for:
▶ very massive stars: WNh spectral type

core H-burning, “O stars on steroids”
▶ classical Wolf-Rayet stars: WNh, WN, WC, WO

massive, core He-burning, hydrogen-depleted

WR spectra caused by high L/M → strong winds
(

Ṁ ≈ 10−5 M⊙
yr

)
- detectable also among multiples and whole populations
- winds are launched by iron-group elements

↪→ strong metallicity-dependence (→ massive BHs)
Careful: Not all hydrogen-free stars are WR stars!

WR winds create unique ecosystems
- environmental enrichment with processed matter
- strong sources of mechanical and ionizing feedback
- dust production in WC+O binaries

WR formation still unclear (likely mix of self- & binary stripping), ≈ 40% in close binaries
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