Topical Overview on Star Cluster Astrophysics Siena, Italy October 30th, 2024

Wolf-Rayet winds

Andreas A.C. Sander

Emmy Noether Research Group Leader ZAH/ARI, Universität Heidelberg

Group Members: V. Ramachandran, G. Gonzalez-Tora, R.R. Lefever, M. Bernini Peron, . C.J.K. Larkin, E.C. Schösser, J. Josiek

What are Wolf-Rayet stars?

WR 124 (Credit: ESA/Hubble & NASA)

What are Wolf-Rayet stars?

Two Galactic Examples:

WR 124 (WN8h)

WR7 (Credit: Jschulman555)

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

What are Wolf-Rayet stars?

Wolf-Rayet (WR) stars are a *spectroscopic* definition:

- optical spectra with strong and broad emission lines
- named after French astronomers
 Charles Wolf & George Rayet
- discovered in 1867
- First found in the Cygnus constellation (WR 134, WR 135, WR 137)
 ▶ nearest one: γ Vel (WR 11)

WN and WC stars

WR stars are divided into two main spectral subclasses:

WN stars:

- Strong *nitrogen* and *helium* emission lines
- can have hydrogen (SpT notation: WNh)

WC (and WO) stars:

- Strong carbon, oxygen, and helium emission lines
- always hydrogen-free

WN and WC stars

WR stars are divided into two main spectral subclasses:

WN stars:

- Strong nitrogen and helium emission lines
- can have hydrogen (SpT notation: WNh)

WC (and WO) stars:

- Strong carbon, oxygen, and *helium* emission lines
- always hydrogen-free

Emission-line spectra often formed completely in the wind, "cloaking" the star

Analysis of the spectrum needed to uncover WR properties and influence

WR subtypes

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386 5

early subtypes: (WN2-5, WC4-6) higher ion stages, broader lines \rightarrow higher wind velocities

Typical values for subtypes at Z_{\odot} : WN2: 3000 km/s WO2: 5000 km/s WN5: 1500 km/s WC5: 3000 km/s WN10: 500 km/s WC9: 1200 km/s

subtype occurrence is related to metallicity (Z):

- \rightarrow distribution shifts to earlier types at lower Z
- ightarrow WN/WC ratio higher at lower Z
- \rightarrow WR stars generally more rare at lower Z

The Wolf-Rayet phenomenon

6

The Wolf-Rayet phenomenon

Why do we get emission-line spectra?

WR emission lines: Emitting surface area larger than the adjacent continuum

In detail, various origins for the different lines:

- resonance scattering
- collisional excitation

- recombination
- continuum fluorescence
- dielectronic recombination
- ► line overlap/interactions

Historical *momentum* problem:

- $L_{\rm WR} \approx L_{\rm OB}$, but $\dot{M}_{\rm WR} \gg \dot{M}_{\rm OB}$
- ightarrow higher wind efficiency $\eta = rac{\dot{M} v_{\infty}}{L/c}$
- \rightarrow mCAK wind theory cannot explain this ($\eta \lesssim 1)$
- \Rightarrow is radiative driving alone sufficient to explain WR winds?

UNIVERSITÄT HEIDELBERG

Historical *momentum problem*:

- $L_{\rm WR} \approx L_{\rm OB}$, but $\dot{M}_{\rm WR} \gg \dot{M}_{\rm OB}$
- \rightarrow higher wind efficiency $\eta = \frac{\dot{M}v_{\infty}}{L/c}$
- ightarrow mCAK wind theory cannot explain this ($\eta \lesssim 1$)
- \Rightarrow is radiative driving alone sufficient to explain WR winds?

Possible alternative WR driving forces:

- strange-mode instabilities (e.g., Gautschy and Glatzel 1990, Wende et al. 2008)

 but no coherent oscillations found in long-term monitoring (Moffat et al. 2008)
- ► convection close to or at the wind onset (Cantiello et al. 2009)
- \blacktriangleright super-chromosphere with $T_{
 m e} > T_{
 m rad}$ ("Dick Thomas force" after Richard N. Thomas, 1949)

8

1800 2000

Monte Carlo Calculations: $\eta>1$ as such is not a problem

- ► de Koter et al. (1997): R136 WNh winds have changing Fe/Ni ionization
- ► Springmann & Puls (1998): "frozen-in" (OB) vs. changing ionization (WR) → closure of "radial gaps" that would otherwise lead to photon "leakage"
- \Rightarrow opacity problem rather than momentum problem (Gayley et al. 1995)

Monte Carlo Calculations: $\eta>1$ as such is not a problem

- ► de Koter et al. (1997): R136 WNh winds have changing Fe/Ni ionization
- ► Springmann & Puls (1998): "frozen-in" (OB) vs. changing ionization (WR) → closure of "radial gaps" that would otherwise lead to photon "leakage"
- \Rightarrow opacity problem rather than momentum problem (Gayley et al. 1995)

The role of Fe M-Shell opacities

However: To launch a WR wind by M-shell opacities, it needs to start deep in the optically thick atmospheres

Opacity calculation in the 1990s yielded a major "bump" of line transitions for Fe M-Shell ions (Fe IX-XVII)

- consequences throughout astrophysics, including e.g. pulsation regimes
- quickly suspected to be important for WR wind launching (Kato & Iben 1992; Pinnester & Eichler 1995; Nugis & Lamers 2002)
- first consistent model by Gräfener & Hamann (2005) for a WC star
- Fe importance independently confirmed by Vink & de Koter (2005)

(albeit their models did not include the M-shell ions)

The WR radius problem

Combined HRD with Milky Way WR analyses results:

- WNh stars close to the main sequence as expected
 - \rightarrow could be H-burning or He-burning
- ► WNE and WC stars have no hydrogen → must be (at least) He-burning
- WNE and WC should sit on the HeZAMS, but most do not

The WR radius problem

Combined HRD with Milky Way WR analyses results:

- WNh stars close to the main sequence as expected
 - \rightarrow could be H-burning or He-burning
- ► WNE and WC stars have no hydrogen → must be (at least) He-burning
- WNE and WC should sit on the HeZAMS, but most do not
- ⇒ Wolf-Rayet Radius Problem: Discrepancy between empirical parameters and stellar structure models
 - \rightarrow similar results for other galaxies and different metallicities

The WR radius problem

Two possible solutions:

- ▶ inflated hydrostatic radii
- deep wind launching ("dynamical inflation")
- \rightarrow coupling of structure and wind physics

Different radius definitions and multiple meanings for \mathcal{T}_{eff} :

$$\blacktriangleright$$
 T_* defined at $au \gg 1$

(typical choices: 20 or 100)

 $T_{2/3}$ defined at the more common au=2/3 .

Problem:

For some purposes, $T_{2/3}$ and $R_{2/3}$ are more "robust", but $T_{2/3}$ does not reflect the radiation field of a WR star

Deep launching as a solution to the WR radius problem

13

HEIDEL BERG

Optically thick WR winds (valid for most, but not all WRs):

Even the continuum is produced in expanding layers with $v \gg v_{\text{sonic}}$ (e.g. Gräfener & Hamann 2004, Sander et al. 2020)

- inferred stellar radii more compact with HD velocity laws
- ► similar radius problems for (some) WNhs and LBVs

Quantitative spectroscopy of Wolf-Rayet stars

Quantitative spectroscopy of WR stars is vital to understand impact and evolution of evolved massive stars, e.g. \rightarrow the remaining hydrogen content of WN-type stars (e.g., Hamann et al. 1995, 2006)

\rightarrow non-homogeneity of WR winds

(e.g., Koesterke & Hamann 1998, Hillier & Miller 1999)

- $ightarrow {}^{12}{
 m C}(lpha,\gamma){}^{16}{
 m O}$ rate from WC and WO stars
 - (e.g., Aadland et al. 2022)
- \rightarrow mechanical and ionizing feedback to the ISM

Analysis of many WR stars also yield empirical $\dot{M}(L, Z, ...)$ (e.g., Nugis & Lamers 2000, Hainich et al. 2015, Shenar et al. 2019) \rightarrow default in stellar evolution & population synthesis \rightarrow dangerous extrapolation to unobserved regimes (e.g., $Z < Z_{SMC}$)

Predictions from dynamically consistent atmospheres

UNIVERSITÄT FUDLISERG SEIT 1386

Theoretical approach using detailed model atmospheres to derive consistent v(r) and \dot{M}

Gräfener & Hamann (2005, 2008), Sander et al. (2017, 2020, 2023)

Additional Iteration Scheme:

- v(r) via integrating the hydrodynamic equation of motion
- ► adjustment of M via boundary constraint (e.g. total opacity conservation)
- concept goes back to Lucy & Solomon (1970), but scalable implementations only recently

Insights on WR winds from dynamically-consistent atmospheres

 $\label{eq:Dynamically-consistent atmospheres crucial to understand cWR \ stars:$

- Crucial role of Fe M-Shell opacities in wind launching (Gräfener & Hamann 2005; Sander et al. 2020, 2023)
- Strong non-monotonic behaviour of \varkappa_F

16

UNIVERSITÄT

Breakdown of the CAK description in WR winds

Failure of the CAK parametrization for cWR winds:

- optically thick, but supersonic layers
 - optical depth parameter t not monotonic in τ or r
- multi-peak structure in the opacities not mapped

Model series: H-free WR stars with WN composition

- variables: L/M, Z
- fixed He-ZAMS L(M)
- fixed T_{*}

Model series: H-free WR stars with WN composition

- variables: L/M, Z
- fixed He-ZAMS L(M)
- fixed \mathcal{T}_\ast

Model sequences yield two regimes with different trends:

- dense winds (\approx LTE at $R_{\rm sonic}$)
- optically thin winds
- transition correlates, but not coincides with $\eta\approx 1$

Model series: H-free WR stars with WN composition

- variables: L/M, Z
- fixed He-ZAMS L(M)
- fixed \mathcal{T}_\ast

Model sequences yield two regimes with different trends:

- dense winds ($\approx \! \mathsf{LTE} \ \mathsf{at} \ \mathit{R}_{\mathrm{sonic}})$
- optically thin winds
- transition correlates, but not coincides with $\eta\approx 1$

Model series: H-free WR stars with WN composition

- variables: L/M, Z
- fixed He-ZAMS L(M)
- fixed \mathcal{T}_*

Model sequences yield two regimes with different trends:

- dense winds (\approx LTE at $R_{\rm sonic}$)
- optically thin winds
- transition correlates, but not coincides with $\eta\approx 1$

Model series: Classical WR stars with WN-type composition

Comparison with traditional WR mass-loss recipes at Z_{\odot} :

19

UNIVERSITÄT HEIDELBERG

Model series: Classical WR stars with WN-type composition

Comparison with traditional WR mass-loss recipes at Z_{\odot} :

19

INVERSITÄ

Insights: Wind driving and mass-loss rates of classical WR stars

New cWR- \dot{M} from Sander & Vink (2020) and Sander et al. (2023):

- $\blacktriangleright\,$ cWR winds scale fundamentally different than OB star winds
- cWR winds are launched deep in the optically thick atmosphere (at $T_e \approx 200 \text{ kK}$)
- surprisingly shallow metallicity-scaling for dense winds: $\dot{M} \propto Z^{0.3}$
- ▶ strong L/M- and Z-dependent breakdown of $\dot{M} \rightarrow$ consequences for observed WR pop.
- for constant L and M: $\dot{M} \propto R_{
 m crit}^3 \propto T_{
 m eff}(au_{
 m crit})^6$

Limits of deep wind launching

Can we explain all WR stars as compact stars with extended wind envelopes? (i.e., is the radius problem solved?)

 \rightarrow we obtain "hard boundaries" for wind launching from the hot iron bump \rightarrow late WR subtypes should always have huge emission lines \rightarrow not observed \Rightarrow there is probably also a regime with inflated *hydrostatic* radii

21

UNIVERSITĂ

Abundance-dependency of Wolf-Rayet winds

For constant stellar parameters: \dot{M} expected to decrease for WNh ightarrow WN ightarrow WC

22

UNIVERSITÄT HEIDELBERG

Abundance-dependency of Wolf-Rayet winds

For constant stellar parameters: \dot{M} expected to decrease for WNh ightarrow WN ightarrow WC

22

UNIVERSITÄT HEIDELBERG

Abundance-dependency of Wolf-Rayet winds

For constant stellar parameters: \dot{M} expected to decrease for WNh ightarrow WN ightarrow WC

22

Effect of leftover hydrogen envelopes

Leftover hydrogen in WN stars: higher Γ_e \rightarrow enhances \dot{M} for fixed stellar parameters

23

UNIVERSITÄT HEIDELBERG

Effect of leftover hydrogen envelopes

Leftover hydrogen in WN stars: higher Γ_e \rightarrow enhances \dot{M} for fixed stellar parameters

Real situation more complex

- \rightarrow competitive process
- free electron budget
- additional gravitational pull
- structural response (radius expansion, shell-burning)

WR mass-loss rates and mechanical feedback

Mass-loss rates typically on the order of $10^{-5}\ldots 10^{-4}~M_\odot~{\rm yr}^{-1}$

Mechanical feedback: $L_{mech} = \frac{1}{2} I$

 $ightarrow v_\infty$ can be more decisive than \dot{M}

 \rightarrow earlier subtypes typically more influential

Diagnostic issue:

optical emission lines can underestimate v_∞

Example: opt: \sim 1700 km/s, UV: \sim 2500 km/s (Lefever et al. 2023) \hookrightarrow factor of two in L_{mech}

 $\begin{array}{l} \mbox{Cyg OB2:} \rightarrow \mbox{see talk by Thibault View} \\ \mbox{ and poster by Cormac Larkin} \end{array}$

	SpT	$\log \dot{M}$	v_∞	$\log L/L_{\odot}$	$\log L_{\rm mech}$	Source
WR 102hb	WN9h	-4.52	400 km/s	6.42	36.5	Liermann et al. (2010)
WR 114	WC5	-4.51	3200 km/s	5.39	38.3	Sander et al. (2019)

cWR winds across the mass ladder

Are massive and low-mass WO winds similar?

ightarrow literature analysis (10 [WO], 3 [WC], 2 [WC]-PG 1159) with distance updates

- ▶ Massive and low-mass objects mix in the $\dot{M}_t(T_{2/3})$ plane
- \blacktriangleright reasonable agreement with observed and theoretical $v_{\infty}(T_{2/3})$ trend
- \blacktriangleright WD merger Pa 30 aligns with WO $\dot{M}(L)$ trend despite $v_{\infty}pprox 15\,000\,{
 m km\,s^{-1}}$

(Partially) stripped, non-WR stars

Varsha Ramachandran

Winds in the regime between classical Wolf-Rayet stars and subdwarfs

- "compact" stripped stars $ightarrow \dot{M} \lesssim 10^{-9}$ (Götberg et al. 2023)
- "bloated" stripped stars \rightarrow hidden in the OB population

26

Search for "suspicious" UV and optical signatures:

- Ramachandran et al. (2023): Discovery of an intermediate-mass stripped star in the SMC (opt. only)
- Ramachandran et al. (2024, XShootU VIII): Three partially stripped stars with UV+optical spectra
- First \dot{M} determination for these kind: $\dot{M} \approx \dot{M}_{Vink 2017}$ \rightarrow severe implications for binary evolution models

Very Massive WNh Stars

H-burning stars close to the Eddington Limit:

- Transition in \dot{M} -behaviour \rightarrow Gautham's talk
- significant impact to young massive populations
- Careful: Not every WNh is very massive or H-burning

27

UNIVERSITĂ

Wolf-Rayet stars as sources of ionizing feedback

Number of photons beyond an ionization edge:

	λ_{edge}	$\nu_{\sf edge}$
Q_0 aka $Q_{ m HI}$	911.6 Å	13.6 eV
Q_1 aka Q_{Hel}	504.3 Å	24.6 eV
Q_2 aka Q_{HeII}	227.9 Å	54.4 eV

Wolf-Rayet stars as sources of ionizing feedback

Number of photons beyond an ionization edge:

	λ_{edge}	ν_{edge}
Q_0 aka $Q_{\rm HI}$	911.6 Å	13.6 eV
Q_1 aka Q_{Hel}	504.3 Å	24.6 eV
Q_2 aka Q_{HeII}	227.9 Å	54.4 eV

$Q_{\text{He II}}$ crucially dependent on \dot{M}_{WR}

Wolf-Rayet stars and HeII ionizing flux

Characteristic "transformed mass-loss rate" \dot{M}_t for regime that yields He II ionizing flux

Multi-D wind modelling effects

Current insights on \dot{M}_{WR} all stem from spherically symmetric models \rightarrow 3D effects?

Velocity distribution and averaged profile:

1D approximations of 3D averaged profiles:

Binaries and multiple systems

Wolf-Rayet stars are often not alone

Around 30...40% of WRs are observed in close binaries

 \rightarrow no obvious metallicity-dependence (Neugent & Massey 2019) Most common: cWR + OB (e.g. WR 133: WN5 + O9; WR 30: WC6 + O7.5)

Very massive stars: WNh + WNh (e.g. WR43A: WN6h + WN6h)

Some objects resolve into higher multiple systems

Requires sufficient spectra:

- high-resolution
- multi-epoch

Background Image Credit: NASA, ESA, and A. Feild (STScI)

How to produce WR stars?

Evolutionary paths towards WR stage still very uncertain and debated.

- Intrinsic stripping challenged by lower wind \dot{M}
- High multiplicity fraction among OB progenitors

But: Multiplicity is only part of a bigger puzzle

- \blacktriangleright WC stage requires intrinsic stripping of a WN
- Single WN stars in the SMC seem to require self-stripping (e.g., Schootemeijer et al. 2024)
- ► Absence of long-period cWR binaries at lower Z
- ► No "smoking gun" SN progenitor → direct BH collapse seems common

The known WR population is likely a mixture of objects with multiple origins.

 $\mathsf{WR}=\mathsf{spectroscopic}$ definition, but synonymously used for:

- very massive stars: WNh spectral type core H-burning, "O stars on steroids"
- classical Wolf-Rayet stars: WNh, WN, WC, WO massive, core He-burning, hydrogen-depleted

 $\mathsf{WR}=\mathsf{spectroscopic}$ definition, but synonymously used for:

- very massive stars: WNh spectral type core H-burning, "O stars on steroids"
- classical Wolf-Rayet stars: WNh, WN, WC, WO massive, core He-burning, hydrogen-depleted

WR spectra caused by high $L/M \rightarrow$ strong winds $\left(\dot{M} \approx 10^{-5} \frac{M_{\odot}}{\mathrm{yr}}\right)$

- detectable also among multiples and whole populations
- winds are launched by iron-group elements
 - \hookrightarrow strong metallicity-dependence (\rightarrow massive BHs)

Careful: Not all hydrogen-free stars are WR stars!

 $\mathsf{WR}=\mathsf{spectroscopic}$ definition, but synonymously used for:

- very massive stars: WNh spectral type core H-burning, "O stars on steroids"
- classical Wolf-Rayet stars: WNh, WN, WC, WO massive, core He-burning, hydrogen-depleted

WR spectra caused by high $L/M \rightarrow$ strong winds $\left(\dot{M} \approx 10^{-5} \frac{M_{\odot}}{vr}\right)$

- detectable also among multiples and whole populations
- winds are launched by iron-group elements
 → strong metallicity-dependence (→ massive BHs)
 Careful: Not all hydrogen-free stars are WR stars!

WR winds create unique ecosystems

- environmental enrichment with processed matter
- strong sources of mechanical and ionizing feedback
- dust production in WC+O binaries

 $\mathsf{WR}=\mathsf{spectroscopic}$ definition, but synonymously used for:

- very massive stars: WNh spectral type core H-burning, "O stars on steroids"
- classical Wolf-Rayet stars: WNh, WN, WC, WO massive, core He-burning, hydrogen-depleted

WR spectra caused by high $L/M \rightarrow$ strong winds $\left(\dot{M} \approx 10^{-5} \frac{M_{\odot}}{vr}\right)$

- detectable also among multiples and whole populations
- winds are launched by iron-group elements
 → strong metallicity-dependence (→ massive BHs)
 Careful: Not all hydrogen-free stars are WR stars!

WR winds create unique ecosystems

- environmental enrichment with processed matter
- strong sources of mechanical and ionizing feedback
- dust production in WC+O binaries

WR formation still unclear (likely mix of self- & binary stripping), $\approx 40\%$ in close binaries