Dynamics of HITI regions

Christopher Matzner, U. Toronto

Why consider dynamics of HII regions?

- Local working zone of feedback from massive stars
- Ionized sound speed well matched to formation environment
- Clear a path for wind/SN energy
- Many observational diagnostics

Dynamics of HII regions

TOSCA

30 Doradus L. Townsley

 $8 \mu m$ $H\alpha$ 0.5-2 keV X-rays

H0

Compressed H⁰

 $t_{\rm rec}$

TOSCA **Dynamics of HII regions**

Complication 1: Density gradient

TOSCA **Dynamics of HII regions**

C. Matzner

$M_{\rm ei} \simeq 10 M_{\star}$ $(\propto Q_0^{4/7} t_{\rm ion}^{9/7} n_0^{-1/7})$

Complication I: Density gradient

TOSCA **Dynamics of HII regions**

C. Matzner

$M_{\rm ei} \simeq 10 M_{\star}$

 $(\propto Q_0^{4/7} t_{\rm ion}^{9/7} n_0^{-1/7})$

Complication 2: Confinement

Dynamics of HII regions TOSCA

Complication 3: Radiation pressure

(Lyman α pressure?)

> lonizing photons

(Reprocessed radiation pressure?) Photon momentum Stellar winds (Trapped wind pressure?) Supernovae

Proto-stellar jets & outflows

TOSCA **Dynamics of HII regions**

Direct radiation pressure

Radiation force radius

Krumholz & CDM 09

TOSCA Dynamics of HII regions

C. Matzner

Draine 2011

 $\begin{aligned} & \text{Ionization parameter} \\ & \mathcal{U} = \frac{n_{\gamma,\text{ion}}}{n} \propto \frac{P_{\text{rad}}}{P_{\text{gas}}} \text{ saturates} \end{aligned}$

Dust optical depth $\tau_d \propto \mathscr{U}$ Yeh & CDM 12 also saturates

Verdolini et al 13

Assumptions:

Hill rgn. in a cloud: compare the pressures **Cloud properties:** Stars: normal-IMF, ZAMS output Mass/Area: Σ Star fraction: f_* Cloud is virialized Lyman α pressure: ignored Velocity dispersion: *o* Ionized gas at 7000 K Working radius: that of cloud **lonized > hydrostatic** Hydrostatic pressure $\frac{\Sigma}{\rm g\,cm^{-2}} \frac{\sigma}{\rm km\,s^{-1}} < 1.9 f_*^{1/2}$ $\sim 0.5G\Sigma^2$ Photo-ionized gas pressure **Radiation > hydrostatic** $ho_{\mathrm{II}} c_{\mathrm{II}}^2 \propto f_*^{1/2} \Sigma / \sigma$ $\Sigma < 1.2 f_{*} \text{ g cm}^{-2}$ **Direct radiation pressure Radiation > lonized** $4\pi R^2 c \propto f_* \Sigma$.6 km/s σ

C. Matzner

Dynamics of HII regions

TOSCA

9

Potential for disruption:

TOSCA Dynamics of HII regions

What about evaporation?

TOSCA Dynamics of HII regions

Complication 4: Outflows & SNe

TOSCA Dynamics of HII regions

TOSCA **Dynamics of HII regions** **C.** Matzner

Rahner+17

Dynamics of HII regions TOSCA

TOSCA **Dynamics of HII regions**

C. Matzner

Yeh & CDM 12

TOSCA **Dynamics of HII regions**

Further complications...

5. Low metallicity

- •Winds and supernovae suppressed
- Photo-ionized gas is warmer
- •Lyman α photon pressure can be significant
- •Very massive stars form more readily

6. Top-heavy IMF

 Luminosity enhanced Ionization strongly enhanced

TOSCA **Dynamics of HII regions**

In summary:

HII regions are important for patterning the matter for shocks and for hadronic interactions.

Modelling them analytically is useful even when everything can be simulated.

TOSCA **Dynamics of HII regions**

30 Doradus L. Townsley

8 µm $H\alpha$ 0.5-2 keV X-rays

C. Matzner

18