

CHALMERS UNIVERSITY OF TECHNOLOGY

Cosmic-Ray Astrochemistry **Why chemistry matters and what it tells you**

Brandt A. L. Gaches ADS Library *Cosmic Origins Postdoctoral Fellow* Website *Website*

Chalmers University of Technology, SE **DE SALICIAN** Chalmers University of Technology, SE *Associated Member* Center for Planetary Systems Habitability, UTexas, USA brandt-gaches.space

…having not yet rid myself of the tradition that "atoms are physics, but molecules are chemistry"

Brandt A. L. **Gaches** | TOSCA - Siena, Italy 2

Referring to his 1926 Bakerian Lecture

- Sir Arthur S. Eddington, 1937

…having not yet rid myself of the tradition that "atoms are physics, but molecules are chemistry" molecules probe physics, molecules enable physics, molecules are physics and chemistry.

…having not yet rid myself of the tradition that "atoms are physics, but molecules are chemistry" molecules probe physics, molecules enable physics, molecules are physics and chemistry.

Cosmic rays: drivers of molecular chemistry

Brandt A. L. Gaches | TOSCA - Siena, Italy **4 and 12 and 13 and 13 and 14 a**

As cosmic rays travel through clouds, they lose energy, reducing their ionising effect

The protons with most importance are between 1 MeV and 1 GeV. Electrons in the 0.1 - 1 keV range.

H**2**

e-

cm

 $\log_{10}\,\vert j_k$

-6

 -10

t I+

2

Brandt A. L. **Gaches** | TOSCA - Siena, Italy **6 and 19 and 19**

p

Cosmic rays: Secondary electrons Efficient secondary electron production, ionizing and exciting molecules

t I+ **2**

H**2**

Cosmic rays: Secondary electrons Electron collisional heating

e-

Brandt A. L. Gaches | TOSCA - Siena, Italy 7

p

Ultraviolet radiation Cosmic rays: Secondary electrons

Can H2 IR emission act as a direct probe?

Can H2 IR emission act as a direct probe?

Can H2 IR emission act as a direct probe?

Cosmic Rays: Drivers of Molecular Chemistry

Cosmic Rays: Drivers of Molecular Chemistry

Constraining the CRIR: "Direct" Methods CR-induced H2 NIR emission H3+ and simply ions (OH+, H2O+..)

Brandt A. L. **Gaches** | TOSCA - Siena, Italy 12

CHALMERS

CHALMERS

Constraining the CRIR: Astrochemical models Analytic steady-state chemistry Chemical model grids Entekhabi+2022Bovino+2020 Luo,G+2024 $\zeta_2 = \bar{\alpha} k_{\rm CO}^{\rm H_3+} \frac{N[\rm CO]N[\rm H_3^+]}{N[\rm H_2]} \frac{1}{L},$ $\widetilde{\zeta}_2 = n(H_2)f(H_3^+) [f(CO)k_{R3} + f(N_2)k_{R4} + f(O)k_{R5} + f(e^-)k_{R6}]$ 10^{-13} $N[H_3^+] = \frac{1}{3} \frac{D[H_3^+]}{R_D},$ $A_V - n_H$ 10^{-14} -) $R_{\rm D} = \frac{N[\rm DCO^{+}]}{N[\rm HCO^{+}]}$ 10^{-15} 10^{-15} CRIR 10^{-16} 3.0 $\frac{1}{2}$ [s⁻¹] 10^{-17} 2.5 10^{-18} 10^{-16} 2.0 $R_{\overline{a}}$ 1.5 10^{-19} model $\mathscr H$ Analytic approach $10³$ $10⁴$ $10⁵$ 10^6 10^{7} 1.0 10^{22} 10^{23} Time (Year) N_{H_2} [cm⁻²] 0.5 0.0 $7⁷$ 8 3 6

Brandt A. L. **Gaches** | TOSCA - Siena, Italy 13

Test id.

Observations Clearly Show CRs are Not Uniform! Observations also show signatures of embedded sources.

Chemical models with protostellar CRs

Without embedded CRs, recover the "layered cake" PDR model

-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-

How are cosmic rays treated in cloud chemistry?

1D with energy-loss solver: Gaches+2019a 3D with ζ(N) function: Gaches+2022a,b 3D with energy-loss solver: on GitHub public Future plans: 1D + 3D with full CR transport

Brandt A. L. Gaches | TOSCA - Siena, Italy 17

3D-PDR: First (public) astrochemistry to include attenuated CR physics Astrochemical models with 3D CR physics Public at uclchem.github.io

Other codes that now include polynomial/fit CR attenuation: UCLCHEM, Nautilus *only for chemical rates, not temperature*!

Cloud-cloud collisions from Wu+2017 14 pc box Post-processed with modified version of 3D- (CR)PDR (Bisbas+2012) (Public at [uclchem.github.io\)](http://uclchem.github.io)

Model the chemistry in 3D using CR attenuation, and four constant rates.

The CRIR uses a prescribed function of *ζ*(*N*) from Padovani+2018. However, 3D-PDR can do the CDSA approach spectrally resolved, but for these 3D runs, a prescribed version was needed for memory concerns.

Astrochemical models with 3D CR physics

Brandt A. L. Gaches | TOSCA - Siena, Italy **18 and 18** 18

The relative errors in the chemical models due to choosing constant ionization rates versus the attenuated model are highly sensitive to the assumed rate, and a complex function of density.

100

50

Rel. Err. (%)

Astrochemical models with 3D CR physics

Constant CR Models Attenuated CR Model $\zeta_c = 1 \times 10^{-16} \text{ s}^{-1}$ $\zeta_c = 2 \times 10^{-16} \text{ s}^{-1}$ $\zeta_c = 5 \times 10^{-16} \text{ s}^{-1}$ $\zeta_c = 1 \times 10^{-15} \text{ s}^{-1}$ $7~pc$ C^+ $\mathbf C$ CO

 -100

 -50

 10^{15}

Gaches+2022a

Impact of CR physics on observables: There are distinct observable differences between cloud models. Noticeable for [CII], [CI] and high-J CO due to dense gas temperatures.

 $= 7-6$ $J = 5-4$ $J = 2-1$ **Gaches**+2022a

Brandt A. L. **Gaches** | TOSCA - Siena, Italy 20

 $\zeta = 10^{-16}$ s⁻¹

Absolute Difference

CO J=(1-0) 115 GHz
Absolute Difference

Astrochemical models with 3D CR physics

Attenuated $\zeta(N)$

[CII] $158 \mu m$ Attenuated $\zeta(N)$

Astrochemical models with 3D CR physics

- >200 molecules, optimised geometry and structure. HF, MP2 and CCSD(T) level calculations
- Single ionization cross sections and rates, KIDA & UMIST formats

The **A**strochemistry **L**ow-energy **e**lectron **C**ross-**s**ection (ALECS) Database CINLeCS GitHub.com/AstroBrandt/ALeCS **Initial release** 50

Cosmic Ray Astrochemistry: Multi- and Inter-disciplinary

Quantum Chemistry & Molecular Physics

Scales

nm- μ m

ps-ns

Brandt A. L. **Gaches** | TOSCA - Siena, Italy **23 Example 23 Example 23 Example 23 Example 23 Example 23**

Cosmic-Ray Astrochemistry & Synthetic Observations

Conclusions

- Observations highlight the *need for more complete models* with cosmic rays.
- Laboratory studies have demonstrated that *energetic particle irradiation can stimulate complex organic chemistry* in astrophysical icy grains.
- There is currently a *substantial gap* in such modeling efforts to include sophisticated treatments of cosmic rays, but new efforts are underway and show promise.
- The thermo-chemistry of dense molecular gas *informs on the spectrum and physics of low-energy cosmic rays* (<1 GeV), which are unobservable to gamma-ray facilities.
- Cosmic-ray chemistry natively *requires collaboration between astronomers, physicists and chemists*, unifying the atomic to astrophysical scales.

If time allows, delve into the CMZ

Impact on organic chemistry - Modelling the Brick Preliminary Hydrogen column density **Example 18 Density estimation via** from Rathborne+2014 Gaches+2024, subm.

Brandt A. L. **Gaches** | TOSCA - Siena, Italy 26

 10^{23}

 10^{22}

 10^{21}

 -10^6

 10^5 \int_0^{∞}

 $-10⁴$

 \cdot 10³

 (cm)

Impact on organic chemistry - Modelling the Brick Preliminary $\zeta = 10^{-16}$ s⁻¹ $\zeta = 10^{-15}$ s⁻¹ $\zeta = 10^{-14}$ s⁻¹ While warmer temperatures can favor organic chemistry, higher CR fluxes inhibit ice growth and dissociate molecules, reducing chemical complexity

