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Outline
 - Why winds could matter

 - Results suggesting they don't...

 - How this is all very tied up in numerics

 - The Future...

2



"Energy Driven"

Classical Picture
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Weaver et al. 1977

Important Parameters:
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"Momentum Driven"

"Over-Cooled" Picture
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 - Stellar Wind Effects 'should' (according to

    Weaver '77) dominate "early feedback"

 - Observations show that this isn't the case

    Lopez+11, Rosen+14, Olivier+20, Tiwari+21

Orion Nebula

 - Wind- Blown Bubble's (WBB) are everywhere!

    Stellar Winds, AGN, Super-bubbles...

Messier 82
Why Winds Could Matter
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Why Winds Matter
 Energy-driven winds should disperse clouds easily

Lancaster+21a
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Turbulent Picture

- Mixing/Dissipation at
Interface enhanced by

Turbulence

- Interior pressure
(therefore dynamics)

set by boundary
conditions at surface

Lancaster et al. 2021a,b,c

 - Efficient enough to
make Momentum

Driven?
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https://s3.amazonaws.com/media-p.slid.es/videos/961100/nZAuQiyk/turbwind_n512_r20_m1e3_4panel.mp4


p =r α tpṗw
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Effective Mixing Velocity

Post-Shock Velocity

v (R ) ≈r b veff
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An Analogy for Wind Bubble Cooling
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Unless you put
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Fills Up

Initially Drains
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Reaches a
Steady State

Why am I
explaining this??

Unless you put
a hole in it
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An Analogy for Wind Bubble Cooling
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Why am I
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Why am I
explaining this??

Wind
Bubble

The Faucet is the
Wind Source (stars)

An Analogy for Wind Bubble Cooling

Water is Energy

The hole is the
cooling/mixing layer

Energy goes
up in bubble

Pressure
Increases

Cooling
becomes more

Efficient
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Relation to Momentum Enhancement
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Relation to Momentum Enhancement

v ≡⟨ out⟩ Average velocity into the Bubble's Surface

NOT MOMENTUM DRIVEN
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Not Momentum Driven

Lancaster+24 28



Resolution Dependence

Lancaster+24 29



Geometry and Dissipation

α =p 16
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Dissipation Geometry

Tan, Oh, & Gronke 2021

Fielding et al. 2020
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Scaling of        - FractalsAbub

Lancaster+24 31



Scaling of        - FractalsAbub

Lancaster+24 32



Scaling of         - Numericsv⟨ out⟩

Lancaster+24 33



Scalings Together
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Resolution Dependence

Lancaster+24 35
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How Does it Actually Evolve?
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Takeaways
 - Need to resolve dissipative scale!

     -        /            or

 - Resolves resolution scaling of both         and

 

 - Likely explains "resolution independence" of

   mixing layer simulations

 

 - Doesn't mean "efficient cooling" is unrealistic!

ℓcool λF ,turb λF

Abub v⟨ out⟩
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Future of Mixing Layers

Lancaster+24
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Future of Mixing Layers

 - Resolved Conduction

 - Resolved (Hyper-) Viscosity

 - Resolved Geometry & Turbulence

 - GPU Accelerated (Athena-K)

Rajsekhar Mohapatra Drummond Fielding 39

https://s3.amazonaws.com/media-p.slid.es/videos/961100/axdQPGiG/trml_xi_1550.mp4


Conclusions
 - Need to resolve dissipative scale!

 

 - Wind effects are still up in the air! But not for long!

 

 - Lesson: Convergence is not always enough!

 

 - Doesn't mean "efficient cooling" is unrealistic!
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https://s3.amazonaws.com/media-p.slid.es/videos/961100/LgcRUT0V/mfb_n512_mhd_rad_4panel_pmag.mp4


Future of Observational Comparisons
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