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Why did the community get interested in SC?

2

We do not find the PeVatrons 
yet and yet we detect PeV 

CRs… 
Maybe SC can be PeVatrons?

Even if SNR were the main 
sources of CR, yet most of them 

are in SC…  
Maybe SC can be main 

contributors to the CR flux?

Finally we did detect SC in VHE 
gamma rays, what does this 

tell us? 

Recall the anomaly 
in 22Ne/20Ne

Ultimately, does the detection of high energy 
gamma rays imply that SC are important CR 
sources?



Why are SNRs are not PeVatrons?

Cristofari, PB & Caprioli 2021, Cristofari, PB & Amato 2020

P. Cristofari et al.: Cosmic ray protons and electrons from supernova remnants
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Fig. 2. Spectra of protons produced at SNRs from type Ia (top), type II
(center), and type II* (bottom) SNRs for ↵ = 4 (thick lines) and ↵ = 4.3
(thin lines) if they were instantaneously liberated into the ISM (bro-
ken shell assumption). The dashed curves illustrate the e↵ect of adia-
batic losses in the downstream region, while the dotted lines refer to the
escape flux from the upstream region. In the bottom part of each panel
we also show the local slope of the spectrum q(p) at a given momentum.

the normal ISM, with a spatially constant gas density and back-
ground magnetic field. For type Ia SNRs the e↵ective maximum
energy is a few tens of TeV (left panel of Fig. 2). There is an
additional spectral steepening at somewhat lower energies due
to the temporal evolution of the maximum energy. More specif-
ically, the steepening occurs at the maximum energy reached at
the end of the ST phase, typically a few TeV. The flux of escaping
CR protons starts at about the same energy, as is clearly visible
in Fig. 2.

For a strong shock, such as the one expected for a young SNR
expanding in the normal ISM, the spectrum of accelerated parti-
cles at the shock location has a slope very close to 4 (thick lines
in Fig. 2). Nevertheless, as recently discussed by Caprioli et al.
(2020), the spectrum can be steeper if the finite velocity of scat-
tering centers in the downstream plasma is taken into account.
For this reason, in Fig. 2 we also show the case ↵ = 4.3 (thin
lines). In all cases of interest, the spectra of CR protons that are
injected into the ISM (as the sum of the two contributions) are
quite close to the spectrum at the shock in terms of slope, with
the exception of the highest energies, as discussed above.

For type II SNRs, the spectrum of CR protons is shown in
the middle panel of Fig. 2. For the sake of making a fair com-
parison between the three types of SN explosions, here we used
an acceleration e�ciency of ⇠CR = 0.1 for all of them. As dis-
cussed by Cristofari et al. (2020), because of the di↵erent rates
of occurrence of these events in the Galaxy, for type II SNRs
the e�ciency is required to be somewhat lower than for type Ia,
which is also reflected in a lower value of the maximum energy
of particles accelerated at the shock (see Eq. (12)). Despite this
bias, the maximum achievable energy for type II SNRs remains
on the order of ⇠105 GeV and falls short of the knee by a large
amount, as already pointed out by Cristofari et al. (2020).

Only when parameters are pushed to the extreme (what we
have called here type II* SNRs) can the maximum energy reach
the knee, as shown in the right plot of Fig. 2. As already pointed
out by Caprioli et al. (2009b), the superposition of the escape
flux from the di↵erent stages of shock evolution in the complex
environment around these SNRs may lead to the appearance of
bumps in the overall CR spectrum that might be related to the
feature recently measured by DAMPE in the 10�100 TeV region
of the proton spectrum (An et al. 2019).

The corresponding spectra of electrons injected by SNRs of
di↵erent types into the ISM are shown in Fig. 3. The thick and
thin curves refer to ↵ = 4 and ↵ = 4.3, respectively. The dash-
dotted line identifies the spectrum of particles accelerated at the
shock, as if they were immediately liberated into the ISM, with-
out energy losses. The solid lines are the spectra of electrons
liberated into the ISM after adiabatic and synchrotron losses
downstream of the shock, while the upstream escape flux, lim-
ited to the times when the maximum energy of electrons is not
determined by energy losses, is shown in the form of dotted lines.
If the SNR shell were broken or if confinement in the down-
stream region were energy-dependent (e.g., due to turbulence
damping), the actual contribution would lie between the dash-
dotted and solid lines.

The rate of synchrotron losses is larger when the condition
for the growth of the magnetic field through the excitation of
the nonresonant hybrid instability is fulfilled. As discussed in
Sect. 2, B2

2/⇢ / v7�↵
sh for this instability, and hence the mecha-

nism becomes less e↵ective or even ine↵ective in the late stages
of SNR evolution; these stages are, however, crucial for the pro-
duction of low energy electrons. As a consequence, the e↵ect of
radiative energy losses is only important at energies at or above
teraelectronvolt levels, while it is minor at lower energies, as
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Fig. 2. Spectra of protons produced at SNRs from type Ia (top), type II
(center), and type II* (bottom) SNRs for ↵ = 4 (thick lines) and ↵ = 4.3
(thin lines) if they were instantaneously liberated into the ISM (bro-
ken shell assumption). The dashed curves illustrate the e↵ect of adia-
batic losses in the downstream region, while the dotted lines refer to the
escape flux from the upstream region. In the bottom part of each panel
we also show the local slope of the spectrum q(p) at a given momentum.

the normal ISM, with a spatially constant gas density and back-
ground magnetic field. For type Ia SNRs the e↵ective maximum
energy is a few tens of TeV (left panel of Fig. 2). There is an
additional spectral steepening at somewhat lower energies due
to the temporal evolution of the maximum energy. More specif-
ically, the steepening occurs at the maximum energy reached at
the end of the ST phase, typically a few TeV. The flux of escaping
CR protons starts at about the same energy, as is clearly visible
in Fig. 2.

For a strong shock, such as the one expected for a young SNR
expanding in the normal ISM, the spectrum of accelerated parti-
cles at the shock location has a slope very close to 4 (thick lines
in Fig. 2). Nevertheless, as recently discussed by Caprioli et al.
(2020), the spectrum can be steeper if the finite velocity of scat-
tering centers in the downstream plasma is taken into account.
For this reason, in Fig. 2 we also show the case ↵ = 4.3 (thin
lines). In all cases of interest, the spectra of CR protons that are
injected into the ISM (as the sum of the two contributions) are
quite close to the spectrum at the shock in terms of slope, with
the exception of the highest energies, as discussed above.

For type II SNRs, the spectrum of CR protons is shown in
the middle panel of Fig. 2. For the sake of making a fair com-
parison between the three types of SN explosions, here we used
an acceleration e�ciency of ⇠CR = 0.1 for all of them. As dis-
cussed by Cristofari et al. (2020), because of the di↵erent rates
of occurrence of these events in the Galaxy, for type II SNRs
the e�ciency is required to be somewhat lower than for type Ia,
which is also reflected in a lower value of the maximum energy
of particles accelerated at the shock (see Eq. (12)). Despite this
bias, the maximum achievable energy for type II SNRs remains
on the order of ⇠105 GeV and falls short of the knee by a large
amount, as already pointed out by Cristofari et al. (2020).

Only when parameters are pushed to the extreme (what we
have called here type II* SNRs) can the maximum energy reach
the knee, as shown in the right plot of Fig. 2. As already pointed
out by Caprioli et al. (2009b), the superposition of the escape
flux from the di↵erent stages of shock evolution in the complex
environment around these SNRs may lead to the appearance of
bumps in the overall CR spectrum that might be related to the
feature recently measured by DAMPE in the 10�100 TeV region
of the proton spectrum (An et al. 2019).

The corresponding spectra of electrons injected by SNRs of
di↵erent types into the ISM are shown in Fig. 3. The thick and
thin curves refer to ↵ = 4 and ↵ = 4.3, respectively. The dash-
dotted line identifies the spectrum of particles accelerated at the
shock, as if they were immediately liberated into the ISM, with-
out energy losses. The solid lines are the spectra of electrons
liberated into the ISM after adiabatic and synchrotron losses
downstream of the shock, while the upstream escape flux, lim-
ited to the times when the maximum energy of electrons is not
determined by energy losses, is shown in the form of dotted lines.
If the SNR shell were broken or if confinement in the down-
stream region were energy-dependent (e.g., due to turbulence
damping), the actual contribution would lie between the dash-
dotted and solid lines.

The rate of synchrotron losses is larger when the condition
for the growth of the magnetic field through the excitation of
the nonresonant hybrid instability is fulfilled. As discussed in
Sect. 2, B2

2/⇢ / v7�↵
sh for this instability, and hence the mecha-

nism becomes less e↵ective or even ine↵ective in the late stages
of SNR evolution; these stages are, however, crucial for the pro-
duction of low energy electrons. As a consequence, the e↵ect of
radiative energy losses is only important at energies at or above
teraelectronvolt levels, while it is minor at lower energies, as
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Fig. 2. Spectra of protons produced at SNRs from type Ia (top), type II
(center), and type II* (bottom) SNRs for ↵ = 4 (thick lines) and ↵ = 4.3
(thin lines) if they were instantaneously liberated into the ISM (bro-
ken shell assumption). The dashed curves illustrate the e↵ect of adia-
batic losses in the downstream region, while the dotted lines refer to the
escape flux from the upstream region. In the bottom part of each panel
we also show the local slope of the spectrum q(p) at a given momentum.

the normal ISM, with a spatially constant gas density and back-
ground magnetic field. For type Ia SNRs the e↵ective maximum
energy is a few tens of TeV (left panel of Fig. 2). There is an
additional spectral steepening at somewhat lower energies due
to the temporal evolution of the maximum energy. More specif-
ically, the steepening occurs at the maximum energy reached at
the end of the ST phase, typically a few TeV. The flux of escaping
CR protons starts at about the same energy, as is clearly visible
in Fig. 2.

For a strong shock, such as the one expected for a young SNR
expanding in the normal ISM, the spectrum of accelerated parti-
cles at the shock location has a slope very close to 4 (thick lines
in Fig. 2). Nevertheless, as recently discussed by Caprioli et al.
(2020), the spectrum can be steeper if the finite velocity of scat-
tering centers in the downstream plasma is taken into account.
For this reason, in Fig. 2 we also show the case ↵ = 4.3 (thin
lines). In all cases of interest, the spectra of CR protons that are
injected into the ISM (as the sum of the two contributions) are
quite close to the spectrum at the shock in terms of slope, with
the exception of the highest energies, as discussed above.

For type II SNRs, the spectrum of CR protons is shown in
the middle panel of Fig. 2. For the sake of making a fair com-
parison between the three types of SN explosions, here we used
an acceleration e�ciency of ⇠CR = 0.1 for all of them. As dis-
cussed by Cristofari et al. (2020), because of the di↵erent rates
of occurrence of these events in the Galaxy, for type II SNRs
the e�ciency is required to be somewhat lower than for type Ia,
which is also reflected in a lower value of the maximum energy
of particles accelerated at the shock (see Eq. (12)). Despite this
bias, the maximum achievable energy for type II SNRs remains
on the order of ⇠105 GeV and falls short of the knee by a large
amount, as already pointed out by Cristofari et al. (2020).

Only when parameters are pushed to the extreme (what we
have called here type II* SNRs) can the maximum energy reach
the knee, as shown in the right plot of Fig. 2. As already pointed
out by Caprioli et al. (2009b), the superposition of the escape
flux from the di↵erent stages of shock evolution in the complex
environment around these SNRs may lead to the appearance of
bumps in the overall CR spectrum that might be related to the
feature recently measured by DAMPE in the 10�100 TeV region
of the proton spectrum (An et al. 2019).

The corresponding spectra of electrons injected by SNRs of
di↵erent types into the ISM are shown in Fig. 3. The thick and
thin curves refer to ↵ = 4 and ↵ = 4.3, respectively. The dash-
dotted line identifies the spectrum of particles accelerated at the
shock, as if they were immediately liberated into the ISM, with-
out energy losses. The solid lines are the spectra of electrons
liberated into the ISM after adiabatic and synchrotron losses
downstream of the shock, while the upstream escape flux, lim-
ited to the times when the maximum energy of electrons is not
determined by energy losses, is shown in the form of dotted lines.
If the SNR shell were broken or if confinement in the down-
stream region were energy-dependent (e.g., due to turbulence
damping), the actual contribution would lie between the dash-
dotted and solid lines.

The rate of synchrotron losses is larger when the condition
for the growth of the magnetic field through the excitation of
the nonresonant hybrid instability is fulfilled. As discussed in
Sect. 2, B2

2/⇢ / v7�↵
sh for this instability, and hence the mecha-

nism becomes less e↵ective or even ine↵ective in the late stages
of SNR evolution; these stages are, however, crucial for the pro-
duction of low energy electrons. As a consequence, the e↵ect of
radiative energy losses is only important at energies at or above
teraelectronvolt levels, while it is minor at lower energies, as
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SNRs can accelerate particles to “decent” energies only if CRs can self-confine themselves close to the shock 

The fastest instability to do so is the non-resonant hybrid instability 

But even in the presence of this phenomenon… what happens is shown below…  

The problem is that even this instability is insufficient to confine for long enough particles UPSTREAM of the 
shock! 



The bubble for compact clusters4016 P. Blasi and G. Morlino 
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Figure 1. Schematic structure of a wind blown bubble excavated by a star 
cluster into the ISM: R s is the position of the TS, R b is the radius of the FS. 
downstream of the TS and the spectrum of particles escaping the 
ca vity exca v ated by the wind can be considerably af fected by such 
losses, at least for massive clusters. This effect shapes the spectrum of 
CR protons released into the ISM, at least for particles with energies 
such that their transport in the cavity is dominated by advection. We 
specialize these general predictions to the case of the Cygnus cocoon, 
for which detailed spectral and morphological information are now 
available. 

The article is organized as follows: in Section 2 we briefly 
summarize the general properties of the wind blown cavity and 
the role of cooling and clumpiness in the distribution of cold gas. 
In Section 3 , we discuss the main considerations that enter the 
calculation of the maximum energy of accelerated particles at the 
TS. In Section 4 , we describe the numerical solution of the transport 
equation of non-thermal particles in the cavity and the associated 
dif fusi ve particle acceleration at the TS. In Section 5 , we describe 
our results in terms of spectrum of accelerated particles and gamma- 
ray emission. We specialize our findings to the description of the 
spectrum and spatial morphology of the gamma-ray emission from 
the Cygnus cocoon. In Section 6 , we outline our conclusions. 
2  T H E  W I N D  BLOWN  BUBBLE  
In Fig. 1 we show a schematic view of the cavity blown by the 
collective wind of the stars located in the central re gion. We e xplicitly 
assume here to be dealing with a compact star cluster, namely a 
cluster in which the TS is located well outside the region where the 
stars are concentrated. 

Immediately outside the stellar cluster, the winds of the individual 
objects merge into a collective wind, with a velocity v w . The wind 
density is obtained from mass conservation: 
ρw ( r ) = Ṁ 

4 πr 2 v w , r > R c , (1) 
where R c is the radius of the core where the stars are concentrated, 
and Ṁ is the rate of mass-loss due to the collective wind. The impact 
of the supersonic wind with the ISM, assumed here to have a constant 
density ρ0 , produces a FS at position R b , while the shocked wind is 
bound by a TS, at a location R s . The shocked ISM and the shocked 
wind are separated by a contact discontinuity (not shown in Fig. 1 ), 

very close to the FS. The region between the contact discontinuity 
and the FS should contain dense cold interstellar gas, plowed away 
during the expansion of the cavity. Ho we ver, se veral instabilities are 
expected to spread this gas inside the cavity while the bubble is 
being blown. Hence clouds of dense molecular gas and regions of 
dense atomic gas are expected to fill, more or less homogeneously, 
the cavity. We will refer to the density of this gas as ρ (we will use 
the symbol n to indicate the number density in the bubble). One can 
easily check that for typical values of the parameters, the density 
contributed by the wind is completely negligible, especially in terms 
of gamma-ray production. 

Since the typical cooling time-scale of the shocked ISM is only 
∼10 4 yr, while the cooling time for the shocked wind is several 10 7 yr 
(Koo & McKee 1992a , b ), we can safely assume that the wind-blown 
b ubble ev olv es quasi-adiabatically. F ollowing Weav er et al. ( 1977 ) 
and Gupta et al. ( 2018 ), Morlino et al. ( 2021b ) provided some useful 
approximations for the position of the FS and the TS, that we use 
here. The position of the FS is at 
R b ( t) = 139 ρ−1 / 5 

10 Ṁ 1 / 5 −4 v 2 / 5 8 t 3 / 5 10 pc , (2) 
where ρ10 is the ISM density in the region around the star clus- 
ter in units of 10 protons cm –3 , v 8 = v w / (1000 km s −1 ), Ṁ −4 = 
Ṁ / (10 −4 M # yr −1 ) and t 10 is the dynamical time in units of 10 million 
yr. The wind luminosity is then L w = 1 

2 Ṁ v 2 w . The TS is located at 
R s = 24 . 3 Ṁ 3 / 10 

−4 v 1 / 10 
8 ρ

−3 / 10 
10 t 2 / 5 10 pc . (3) 

A more accurate calculation (Weaver et al. 1977 ) shows that the 
results earlier are accurate within ! 10 per cent . We stress again 
that the speed of the TS in the laboratory frame is very low, so that 
the entire bubble structure evolves slowly and can be considered 
as stationary to first approximation. It is worth stressing that the 
formation of a collective wind occurs only for compact clusters that 
have a typical cluster size R c $ R s (see, e.g. Gupta et al. 2020 ). 
2.1 Cooling effects and clumpiness 
In the model described earlier, the v olume a veraged density and 
temperature of the hot-shocked wind can be estimated as 
n b = Ṁ t age 

4 π/ 3 R 3 b = 3 . 6 × 10 −3 ρ3 / 5 
10 Ṁ 2 / 5 −4 v −6 / 5 

8 t −4 / 5 
10 cm −3 (4) 

and 
T b = P 

n b k B & 10 7 L 2 / 5 w, 38 n 3 / 5 10 n −1 
b, −2 t −4 / 5 

10 K , (5) 
respectively, where we introduced n b, −2 = n b / 10 −2 cm −3 . Alterna- 
tiv ely, cooling, that we ne glected in the estimates earlier, leads 
to a reduction of the temperature and therefore a smaller size 
of the bubble. Gupta et al. ( 2016 ) retained the effect of cooling 
and accounted for the radiation pressure from the stars, using 1D 
hydrodynamical simulations. In this way, they predict a bubble size 
that is smaller by ∼ 30 per cent at an age of a few Myr and a 
temperature roughly one order of magnitude smaller than the one 
estimated in equation ( 5 ). These effects appear rather mild in terms 
of the global structure of the bubble and the associated high-energy 
phenomenology. Ho we ver, the simulations of Gupta et al. ( 2016 ), 
being 1D in space, do not account for the possible presence of clumps 
in the bubble that may enhance the effect of cooling. 

The presence of dense clumps in the bubble is especially important 
for the problem discussed here, in that it may affect the strength and 
morphology of the gamma-ray signal. As we discuss in Section 5 , the 
present gamma-ray observations show that the average gas density 
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If the cluster is sufficiently compact the collective wind of the stars in the 
core may excavate a bubble with an outer boundary (forward shock) and 
a termination shock at a distance that is fixed by dynamics 

In the wind region the plasma velocity is constant, hence the density 
drops as 1/r2
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Figure 1. Schematic structure of a wind blown bubble excavated by a star 
cluster into the ISM: R s is the position of the TS, R b is the radius of the FS. 
downstream of the TS and the spectrum of particles escaping the 
ca vity exca v ated by the wind can be considerably af fected by such 
losses, at least for massive clusters. This effect shapes the spectrum of 
CR protons released into the ISM, at least for particles with energies 
such that their transport in the cavity is dominated by advection. We 
specialize these general predictions to the case of the Cygnus cocoon, 
for which detailed spectral and morphological information are now 
available. 

The article is organized as follows: in Section 2 we briefly 
summarize the general properties of the wind blown cavity and 
the role of cooling and clumpiness in the distribution of cold gas. 
In Section 3 , we discuss the main considerations that enter the 
calculation of the maximum energy of accelerated particles at the 
TS. In Section 4 , we describe the numerical solution of the transport 
equation of non-thermal particles in the cavity and the associated 
dif fusi ve particle acceleration at the TS. In Section 5 , we describe 
our results in terms of spectrum of accelerated particles and gamma- 
ray emission. We specialize our findings to the description of the 
spectrum and spatial morphology of the gamma-ray emission from 
the Cygnus cocoon. In Section 6 , we outline our conclusions. 
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In Fig. 1 we show a schematic view of the cavity blown by the 
collective wind of the stars located in the central re gion. We e xplicitly 
assume here to be dealing with a compact star cluster, namely a 
cluster in which the TS is located well outside the region where the 
stars are concentrated. 

Immediately outside the stellar cluster, the winds of the individual 
objects merge into a collective wind, with a velocity v w . The wind 
density is obtained from mass conservation: 
ρw ( r ) = Ṁ 

4 πr 2 v w , r > R c , (1) 
where R c is the radius of the core where the stars are concentrated, 
and Ṁ is the rate of mass-loss due to the collective wind. The impact 
of the supersonic wind with the ISM, assumed here to have a constant 
density ρ0 , produces a FS at position R b , while the shocked wind is 
bound by a TS, at a location R s . The shocked ISM and the shocked 
wind are separated by a contact discontinuity (not shown in Fig. 1 ), 

very close to the FS. The region between the contact discontinuity 
and the FS should contain dense cold interstellar gas, plowed away 
during the expansion of the cavity. Ho we ver, se veral instabilities are 
expected to spread this gas inside the cavity while the bubble is 
being blown. Hence clouds of dense molecular gas and regions of 
dense atomic gas are expected to fill, more or less homogeneously, 
the cavity. We will refer to the density of this gas as ρ (we will use 
the symbol n to indicate the number density in the bubble). One can 
easily check that for typical values of the parameters, the density 
contributed by the wind is completely negligible, especially in terms 
of gamma-ray production. 

Since the typical cooling time-scale of the shocked ISM is only 
∼10 4 yr, while the cooling time for the shocked wind is several 10 7 yr 
(Koo & McKee 1992a , b ), we can safely assume that the wind-blown 
b ubble ev olv es quasi-adiabatically. F ollowing Weav er et al. ( 1977 ) 
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approximations for the position of the FS and the TS, that we use 
here. The position of the FS is at 
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Ṁ / (10 −4 M # yr −1 ) and t 10 is the dynamical time in units of 10 million 
yr. The wind luminosity is then L w = 1 
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8 ρ

−3 / 10 
10 t 2 / 5 10 pc . (3) 

A more accurate calculation (Weaver et al. 1977 ) shows that the 
results earlier are accurate within ! 10 per cent . We stress again 
that the speed of the TS in the laboratory frame is very low, so that 
the entire bubble structure evolves slowly and can be considered 
as stationary to first approximation. It is worth stressing that the 
formation of a collective wind occurs only for compact clusters that 
have a typical cluster size R c $ R s (see, e.g. Gupta et al. 2020 ). 
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temperature of the hot-shocked wind can be estimated as 
n b = Ṁ t age 
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10 cm −3 (4) 

and 
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10 K , (5) 
respectively, where we introduced n b, −2 = n b / 10 −2 cm −3 . Alterna- 
tiv ely, cooling, that we ne glected in the estimates earlier, leads 
to a reduction of the temperature and therefore a smaller size 
of the bubble. Gupta et al. ( 2016 ) retained the effect of cooling 
and accounted for the radiation pressure from the stars, using 1D 
hydrodynamical simulations. In this way, they predict a bubble size 
that is smaller by ∼ 30 per cent at an age of a few Myr and a 
temperature roughly one order of magnitude smaller than the one 
estimated in equation ( 5 ). These effects appear rather mild in terms 
of the global structure of the bubble and the associated high-energy 
phenomenology. Ho we ver, the simulations of Gupta et al. ( 2016 ), 
being 1D in space, do not account for the possible presence of clumps 
in the bubble that may enhance the effect of cooling. 
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for the problem discussed here, in that it may affect the strength and 
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Figure 1. Schematic structure of a wind blown bubble excavated by a star 
cluster into the ISM: R s is the position of the TS, R b is the radius of the FS. 
downstream of the TS and the spectrum of particles escaping the 
ca vity exca v ated by the wind can be considerably af fected by such 
losses, at least for massive clusters. This effect shapes the spectrum of 
CR protons released into the ISM, at least for particles with energies 
such that their transport in the cavity is dominated by advection. We 
specialize these general predictions to the case of the Cygnus cocoon, 
for which detailed spectral and morphological information are now 
available. 

The article is organized as follows: in Section 2 we briefly 
summarize the general properties of the wind blown cavity and 
the role of cooling and clumpiness in the distribution of cold gas. 
In Section 3 , we discuss the main considerations that enter the 
calculation of the maximum energy of accelerated particles at the 
TS. In Section 4 , we describe the numerical solution of the transport 
equation of non-thermal particles in the cavity and the associated 
dif fusi ve particle acceleration at the TS. In Section 5 , we describe 
our results in terms of spectrum of accelerated particles and gamma- 
ray emission. We specialize our findings to the description of the 
spectrum and spatial morphology of the gamma-ray emission from 
the Cygnus cocoon. In Section 6 , we outline our conclusions. 
2  T H E  W I N D  BLOW N  BUBBLE  
In Fig. 1 we show a schematic view of the cavity blown by the 
collective wind of the stars located in the central re gion. We e xplicitly 
assume here to be dealing with a compact star cluster, namely a 
cluster in which the TS is located well outside the region where the 
stars are concentrated. 

Immediately outside the stellar cluster, the winds of the individual 
objects merge into a collective wind, with a velocity v w . The wind 
density is obtained from mass conservation: 
ρw ( r ) = Ṁ 

4 πr 2 v w , r > R c , (1) 
where R c is the radius of the core where the stars are concentrated, 
and Ṁ is the rate of mass-loss due to the collective wind. The impact 
of the supersonic wind with the ISM, assumed here to have a constant 
density ρ0 , produces a FS at position R b , while the shocked wind is 
bound by a TS, at a location R s . The shocked ISM and the shocked 
wind are separated by a contact discontinuity (not shown in Fig. 1 ), 

very close to the FS. The region between the contact discontinuity 
and the FS should contain dense cold interstellar gas, plowed away 
during the expansion of the cavity. Ho we ver, se veral instabilities are 
expected to spread this gas inside the cavity while the bubble is 
being blown. Hence clouds of dense molecular gas and regions of 
dense atomic gas are expected to fill, more or less homogeneously, 
the cavity. We will refer to the density of this gas as ρ (we will use 
the symbol n to indicate the number density in the bubble). One can 
easily check that for typical values of the parameters, the density 
contributed by the wind is completely negligible, especially in terms 
of gamma-ray production. 

Since the typical cooling time-scale of the shocked ISM is only 
∼10 4 yr, while the cooling time for the shocked wind is several 10 7 yr 
(Koo & McKee 1992a , b ), we can safely assume that the wind-blown 
b ubble ev olv es quasi-adiabatically. F ollowing Weav er et al. ( 1977 ) 
and Gupta et al. ( 2018 ), Morlino et al. ( 2021b ) provided some useful 
approximations for the position of the FS and the TS, that we use 
here. The position of the FS is at 
R b ( t) = 139 ρ−1 / 5 

10 Ṁ 1 / 5 −4 v 2 / 5 8 t 3 / 5 10 pc , (2) 
where ρ10 is the ISM density in the region around the star clus- 
ter in units of 10 protons cm –3 , v 8 = v w / (1000 km s −1 ), Ṁ −4 = 
Ṁ / (10 −4 M # yr −1 ) and t 10 is the dynamical time in units of 10 million 
yr. The wind luminosity is then L w = 1 

2 Ṁ v 2 w . The TS is located at 
R s = 24 . 3 Ṁ 3 / 10 

−4 v 1 / 10 
8 ρ

−3 / 10 
10 t 2 / 5 10 pc . (3) 

A more accurate calculation (Weaver et al. 1977 ) shows that the 
results earlier are accurate within ! 10 per cent . We stress again 
that the speed of the TS in the laboratory frame is very low, so that 
the entire bubble structure evolves slowly and can be considered 
as stationary to first approximation. It is worth stressing that the 
formation of a collective wind occurs only for compact clusters that 
have a typical cluster size R c $ R s (see, e.g. Gupta et al. 2020 ). 
2.1 Cooling effects and clumpiness 
In the model described earlier, the v olume a veraged density and 
temperature of the hot-shocked wind can be estimated as 
n b = Ṁ t age 

4 π/ 3 R 3 b = 3 . 6 × 10 −3 ρ3 / 5 
10 Ṁ 2 / 5 −4 v −6 / 5 

8 t −4 / 5 
10 cm −3 (4) 

and 
T b = P 

n b k B & 10 7 L 2 / 5 w, 38 n 3 / 5 10 n −1 
b, −2 t −4 / 5 

10 K , (5) 
respectively, where we introduced n b, −2 = n b / 10 −2 cm −3 . Alterna- 
tiv ely, cooling, that we ne glected in the estimates earlier, leads 
to a reduction of the temperature and therefore a smaller size 
of the bubble. Gupta et al. ( 2016 ) retained the effect of cooling 
and accounted for the radiation pressure from the stars, using 1D 
hydrodynamical simulations. In this way, they predict a bubble size 
that is smaller by ∼ 30 per cent at an age of a few Myr and a 
temperature roughly one order of magnitude smaller than the one 
estimated in equation ( 5 ). These effects appear rather mild in terms 
of the global structure of the bubble and the associated high-energy 
phenomenology. Ho we ver, the simulations of Gupta et al. ( 2016 ), 
being 1D in space, do not account for the possible presence of clumps 
in the bubble that may enhance the effect of cooling. 

The presence of dense clumps in the bubble is especially important 
for the problem discussed here, in that it may affect the strength and 
morphology of the gamma-ray signal. As we discuss in Section 5 , the 
present gamma-ray observations show that the average gas density 
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Figure 1. Schematic structure of a wind blown bubble excavated by a star 
cluster into the ISM: R s is the position of the TS, R b is the radius of the FS. 
downstream of the TS and the spectrum of particles escaping the 
ca vity exca v ated by the wind can be considerably af fected by such 
losses, at least for massive clusters. This effect shapes the spectrum of 
CR protons released into the ISM, at least for particles with energies 
such that their transport in the cavity is dominated by advection. We 
specialize these general predictions to the case of the Cygnus cocoon, 
for which detailed spectral and morphological information are now 
available. 

The article is organized as follows: in Section 2 we briefly 
summarize the general properties of the wind blown cavity and 
the role of cooling and clumpiness in the distribution of cold gas. 
In Section 3 , we discuss the main considerations that enter the 
calculation of the maximum energy of accelerated particles at the 
TS. In Section 4 , we describe the numerical solution of the transport 
equation of non-thermal particles in the cavity and the associated 
dif fusi ve particle acceleration at the TS. In Section 5 , we describe 
our results in terms of spectrum of accelerated particles and gamma- 
ray emission. We specialize our findings to the description of the 
spectrum and spatial morphology of the gamma-ray emission from 
the Cygnus cocoon. In Section 6 , we outline our conclusions. 
2  T H E  W I N D  B L OWN  BUBBLE  
In Fig. 1 we show a schematic view of the cavity blown by the 
collective wind of the stars located in the central re gion. We e xplicitly 
assume here to be dealing with a compact star cluster, namely a 
cluster in which the TS is located well outside the region where the 
stars are concentrated. 

Immediately outside the stellar cluster, the winds of the individual 
objects merge into a collective wind, with a velocity v w . The wind 
density is obtained from mass conservation: 
ρw ( r ) = Ṁ 

4 πr 2 v w , r > R c , (1) 
where R c is the radius of the core where the stars are concentrated, 
and Ṁ is the rate of mass-loss due to the collective wind. The impact 
of the supersonic wind with the ISM, assumed here to have a constant 
density ρ0 , produces a FS at position R b , while the shocked wind is 
bound by a TS, at a location R s . The shocked ISM and the shocked 
wind are separated by a contact discontinuity (not shown in Fig. 1 ), 

very close to the FS. The region between the contact discontinuity 
and the FS should contain dense cold interstellar gas, plowed away 
during the expansion of the cavity. Ho we ver, se veral instabilities are 
expected to spread this gas inside the cavity while the bubble is 
being blown. Hence clouds of dense molecular gas and regions of 
dense atomic gas are expected to fill, more or less homogeneously, 
the cavity. We will refer to the density of this gas as ρ (we will use 
the symbol n to indicate the number density in the bubble). One can 
easily check that for typical values of the parameters, the density 
contributed by the wind is completely negligible, especially in terms 
of gamma-ray production. 

Since the typical cooling time-scale of the shocked ISM is only 
∼10 4 yr, while the cooling time for the shocked wind is several 10 7 yr 
(Koo & McKee 1992a , b ), we can safely assume that the wind-blown 
b ubble ev olv es quasi-adiabatically. F ollowing Weav er et al. ( 1977 ) 
and Gupta et al. ( 2018 ), Morlino et al. ( 2021b ) provided some useful 
approximations for the position of the FS and the TS, that we use 
here. The position of the FS is at 
R b ( t) = 139 ρ−1 / 5 

10 Ṁ 1 / 5 −4 v 2 / 5 8 t 3 / 5 10 pc , (2) 
where ρ10 is the ISM density in the region around the star clus- 
ter in units of 10 protons cm –3 , v 8 = v w / (1000 km s −1 ), Ṁ −4 = 
Ṁ / (10 −4 M # yr −1 ) and t 10 is the dynamical time in units of 10 million 
yr. The wind luminosity is then L w = 1 

2 Ṁ v 2 w . The TS is located at 
R s = 24 . 3 Ṁ 3 / 10 

−4 v 1 / 10 
8 ρ

−3 / 10 
10 t 2 / 5 10 pc . (3) 

A more accurate calculation (Weaver et al. 1977 ) shows that the 
results earlier are accurate within ! 10 per cent . We stress again 
that the speed of the TS in the laboratory frame is very low, so that 
the entire bubble structure evolves slowly and can be considered 
as stationary to first approximation. It is worth stressing that the 
formation of a collective wind occurs only for compact clusters that 
have a typical cluster size R c $ R s (see, e.g. Gupta et al. 2020 ). 
2.1 Cooling effects and clumpiness 
In the model described earlier, the v olume a veraged density and 
temperature of the hot-shocked wind can be estimated as 
n b = Ṁ t age 

4 π/ 3 R 3 b = 3 . 6 × 10 −3 ρ3 / 5 
10 Ṁ 2 / 5 −4 v −6 / 5 

8 t −4 / 5 
10 cm −3 (4) 

and 
T b = P 

n b k B & 10 7 L 2 / 5 w, 38 n 3 / 5 10 n −1 
b, −2 t −4 / 5 

10 K , (5) 
respectively, where we introduced n b, −2 = n b / 10 −2 cm −3 . Alterna- 
tiv ely, cooling, that we ne glected in the estimates earlier, leads 
to a reduction of the temperature and therefore a smaller size 
of the bubble. Gupta et al. ( 2016 ) retained the effect of cooling 
and accounted for the radiation pressure from the stars, using 1D 
hydrodynamical simulations. In this way, they predict a bubble size 
that is smaller by ∼ 30 per cent at an age of a few Myr and a 
temperature roughly one order of magnitude smaller than the one 
estimated in equation ( 5 ). These effects appear rather mild in terms 
of the global structure of the bubble and the associated high-energy 
phenomenology. Ho we ver, the simulations of Gupta et al. ( 2016 ), 
being 1D in space, do not account for the possible presence of clumps 
in the bubble that may enhance the effect of cooling. 

The presence of dense clumps in the bubble is especially important 
for the problem discussed here, in that it may affect the strength and 
morphology of the gamma-ray signal. As we discuss in Section 5 , the 
present gamma-ray observations show that the average gas density 
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Figure 1. Schematic structure of a wind blown bubble excavated by a star 
cluster into the ISM: R s is the position of the TS, R b is the radius of the FS. 
downstream of the TS and the spectrum of particles escaping the 
ca vity exca v ated by the wind can be considerably af fected by such 
losses, at least for massive clusters. This effect shapes the spectrum of 
CR protons released into the ISM, at least for particles with energies 
such that their transport in the cavity is dominated by advection. We 
specialize these general predictions to the case of the Cygnus cocoon, 
for which detailed spectral and morphological information are now 
available. 

The article is organized as follows: in Section 2 we briefly 
summarize the general properties of the wind blown cavity and 
the role of cooling and clumpiness in the distribution of cold gas. 
In Section 3 , we discuss the main considerations that enter the 
calculation of the maximum energy of accelerated particles at the 
TS. In Section 4 , we describe the numerical solution of the transport 
equation of non-thermal particles in the cavity and the associated 
dif fusi ve particle acceleration at the TS. In Section 5 , we describe 
our results in terms of spectrum of accelerated particles and gamma- 
ray emission. We specialize our findings to the description of the 
spectrum and spatial morphology of the gamma-ray emission from 
the Cygnus cocoon. In Section 6 , we outline our conclusions. 
2  T H E  W I N D  BLOWN  BUBBLE  
In Fig. 1 we show a schematic view of the cavity blown by the 
collective wind of the stars located in the central re gion. We e xplicitly 
assume here to be dealing with a compact star cluster, namely a 
cluster in which the TS is located well outside the region where the 
stars are concentrated. 

Immediately outside the stellar cluster, the winds of the individual 
objects merge into a collective wind, with a velocity v w . The wind 
density is obtained from mass conservation: 
ρw ( r ) = Ṁ 

4 πr 2 v w , r > R c , (1) 
where R c is the radius of the core where the stars are concentrated, 
and Ṁ is the rate of mass-loss due to the collective wind. The impact 
of the supersonic wind with the ISM, assumed here to have a constant 
density ρ0 , produces a FS at position R b , while the shocked wind is 
bound by a TS, at a location R s . The shocked ISM and the shocked 
wind are separated by a contact discontinuity (not shown in Fig. 1 ), 

very close to the FS. The region between the contact discontinuity 
and the FS should contain dense cold interstellar gas, plowed away 
during the expansion of the cavity. Ho we ver, se veral instabilities are 
expected to spread this gas inside the cavity while the bubble is 
being blown. Hence clouds of dense molecular gas and regions of 
dense atomic gas are expected to fill, more or less homogeneously, 
the cavity. We will refer to the density of this gas as ρ (we will use 
the symbol n to indicate the number density in the bubble). One can 
easily check that for typical values of the parameters, the density 
contributed by the wind is completely negligible, especially in terms 
of gamma-ray production. 

Since the typical cooling time-scale of the shocked ISM is only 
∼10 4 yr, while the cooling time for the shocked wind is several 10 7 yr 
(Koo & McKee 1992a , b ), we can safely assume that the wind-blown 
b ubble ev olv es quasi-adiabatically. F ollowing Weav er et al. ( 1977 ) 
and Gupta et al. ( 2018 ), Morlino et al. ( 2021b ) provided some useful 
approximations for the position of the FS and the TS, that we use 
here. The position of the FS is at 
R b ( t) = 139 ρ−1 / 5 

10 Ṁ 1 / 5 −4 v 2 / 5 8 t 3 / 5 10 pc , (2) 
where ρ10 is the ISM density in the region around the star clus- 
ter in units of 10 protons cm –3 , v 8 = v w / (1000 km s −1 ), Ṁ −4 = 
Ṁ / (10 −4 M # yr −1 ) and t 10 is the dynamical time in units of 10 million 
yr. The wind luminosity is then L w = 1 

2 Ṁ v 2 w . The TS is located at 
R s = 24 . 3 Ṁ 3 / 10 

−4 v 1 / 10 
8 ρ

−3 / 10 
10 t 2 / 5 10 pc . (3) 

A more accurate calculation (Weaver et al. 1977 ) shows that the 
results earlier are accurate within ! 10 per cent . We stress again 
that the speed of the TS in the laboratory frame is very low, so that 
the entire bubble structure evolves slowly and can be considered 
as stationary to first approximation. It is worth stressing that the 
formation of a collective wind occurs only for compact clusters that 
have a typical cluster size R c $ R s (see, e.g. Gupta et al. 2020 ). 
2.1 Cooling effects and clumpiness 
In the model described earlier, the v olume a veraged density and 
temperature of the hot-shocked wind can be estimated as 
n b = Ṁ t age 

4 π/ 3 R 3 b = 3 . 6 × 10 −3 ρ3 / 5 
10 Ṁ 2 / 5 −4 v −6 / 5 

8 t −4 / 5 
10 cm −3 (4) 

and 
T b = P 

n b k B & 10 7 L 2 / 5 w, 38 n 3 / 5 10 n −1 
b, −2 t −4 / 5 

10 K , (5) 
respectively, where we introduced n b, −2 = n b / 10 −2 cm −3 . Alterna- 
tiv ely, cooling, that we ne glected in the estimates earlier, leads 
to a reduction of the temperature and therefore a smaller size 
of the bubble. Gupta et al. ( 2016 ) retained the effect of cooling 
and accounted for the radiation pressure from the stars, using 1D 
hydrodynamical simulations. In this way, they predict a bubble size 
that is smaller by ∼ 30 per cent at an age of a few Myr and a 
temperature roughly one order of magnitude smaller than the one 
estimated in equation ( 5 ). These effects appear rather mild in terms 
of the global structure of the bubble and the associated high-energy 
phenomenology. Ho we ver, the simulations of Gupta et al. ( 2016 ), 
being 1D in space, do not account for the possible presence of clumps 
in the bubble that may enhance the effect of cooling. 

The presence of dense clumps in the bubble is especially important 
for the problem discussed here, in that it may affect the strength and 
morphology of the gamma-ray signal. As we discuss in Section 5 , the 
present gamma-ray observations show that the average gas density 
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a termination shock at a distance that is fixed by dynamics 
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Figure 1. Schematic structure of a wind blown bubble excavated by a star 
cluster into the ISM: R s is the position of the TS, R b is the radius of the FS. 
downstream of the TS and the spectrum of particles escaping the 
ca vity exca v ated by the wind can be considerably af fected by such 
losses, at least for massive clusters. This effect shapes the spectrum of 
CR protons released into the ISM, at least for particles with energies 
such that their transport in the cavity is dominated by advection. We 
specialize these general predictions to the case of the Cygnus cocoon, 
for which detailed spectral and morphological information are now 
available. 

The article is organized as follows: in Section 2 we briefly 
summarize the general properties of the wind blown cavity and 
the role of cooling and clumpiness in the distribution of cold gas. 
In Section 3 , we discuss the main considerations that enter the 
calculation of the maximum energy of accelerated particles at the 
TS. In Section 4 , we describe the numerical solution of the transport 
equation of non-thermal particles in the cavity and the associated 
dif fusi ve particle acceleration at the TS. In Section 5 , we describe 
our results in terms of spectrum of accelerated particles and gamma- 
ray emission. We specialize our findings to the description of the 
spectrum and spatial morphology of the gamma-ray emission from 
the Cygnus cocoon. In Section 6 , we outline our conclusions. 
2  T H E  W I N D  BLOW N  BUBBLE  
In Fig. 1 we show a schematic view of the cavity blown by the 
collective wind of the stars located in the central re gion. We e xplicitly 
assume here to be dealing with a compact star cluster, namely a 
cluster in which the TS is located well outside the region where the 
stars are concentrated. 

Immediately outside the stellar cluster, the winds of the individual 
objects merge into a collective wind, with a velocity v w . The wind 
density is obtained from mass conservation: 
ρw ( r ) = Ṁ 

4 πr 2 v w , r > R c , (1) 
where R c is the radius of the core where the stars are concentrated, 
and Ṁ is the rate of mass-loss due to the collective wind. The impact 
of the supersonic wind with the ISM, assumed here to have a constant 
density ρ0 , produces a FS at position R b , while the shocked wind is 
bound by a TS, at a location R s . The shocked ISM and the shocked 
wind are separated by a contact discontinuity (not shown in Fig. 1 ), 

very close to the FS. The region between the contact discontinuity 
and the FS should contain dense cold interstellar gas, plowed away 
during the expansion of the cavity. Ho we ver, se veral instabilities are 
expected to spread this gas inside the cavity while the bubble is 
being blown. Hence clouds of dense molecular gas and regions of 
dense atomic gas are expected to fill, more or less homogeneously, 
the cavity. We will refer to the density of this gas as ρ (we will use 
the symbol n to indicate the number density in the bubble). One can 
easily check that for typical values of the parameters, the density 
contributed by the wind is completely negligible, especially in terms 
of gamma-ray production. 

Since the typical cooling time-scale of the shocked ISM is only 
∼10 4 yr, while the cooling time for the shocked wind is several 10 7 yr 
(Koo & McKee 1992a , b ), we can safely assume that the wind-blown 
b ubble ev olv es quasi-adiabatically. F ollowing Weav er et al. ( 1977 ) 
and Gupta et al. ( 2018 ), Morlino et al. ( 2021b ) provided some useful 
approximations for the position of the FS and the TS, that we use 
here. The position of the FS is at 
R b ( t) = 139 ρ−1 / 5 

10 Ṁ 1 / 5 −4 v 2 / 5 8 t 3 / 5 10 pc , (2) 
where ρ10 is the ISM density in the region around the star clus- 
ter in units of 10 protons cm –3 , v 8 = v w / (1000 km s −1 ), Ṁ −4 = 
Ṁ / (10 −4 M # yr −1 ) and t 10 is the dynamical time in units of 10 million 
yr. The wind luminosity is then L w = 1 

2 Ṁ v 2 w . The TS is located at 
R s = 24 . 3 Ṁ 3 / 10 

−4 v 1 / 10 
8 ρ

−3 / 10 
10 t 2 / 5 10 pc . (3) 

A more accurate calculation (Weaver et al. 1977 ) shows that the 
results earlier are accurate within ! 10 per cent . We stress again 
that the speed of the TS in the laboratory frame is very low, so that 
the entire bubble structure evolves slowly and can be considered 
as stationary to first approximation. It is worth stressing that the 
formation of a collective wind occurs only for compact clusters that 
have a typical cluster size R c $ R s (see, e.g. Gupta et al. 2020 ). 
2.1 Cooling effects and clumpiness 
In the model described earlier, the v olume a veraged density and 
temperature of the hot-shocked wind can be estimated as 
n b = Ṁ t age 

4 π/ 3 R 3 b = 3 . 6 × 10 −3 ρ3 / 5 
10 Ṁ 2 / 5 −4 v −6 / 5 

8 t −4 / 5 
10 cm −3 (4) 

and 
T b = P 

n b k B & 10 7 L 2 / 5 w, 38 n 3 / 5 10 n −1 
b, −2 t −4 / 5 

10 K , (5) 
respectively, where we introduced n b, −2 = n b / 10 −2 cm −3 . Alterna- 
tiv ely, cooling, that we ne glected in the estimates earlier, leads 
to a reduction of the temperature and therefore a smaller size 
of the bubble. Gupta et al. ( 2016 ) retained the effect of cooling 
and accounted for the radiation pressure from the stars, using 1D 
hydrodynamical simulations. In this way, they predict a bubble size 
that is smaller by ∼ 30 per cent at an age of a few Myr and a 
temperature roughly one order of magnitude smaller than the one 
estimated in equation ( 5 ). These effects appear rather mild in terms 
of the global structure of the bubble and the associated high-energy 
phenomenology. Ho we ver, the simulations of Gupta et al. ( 2016 ), 
being 1D in space, do not account for the possible presence of clumps 
in the bubble that may enhance the effect of cooling. 

The presence of dense clumps in the bubble is especially important 
for the problem discussed here, in that it may affect the strength and 
morphology of the gamma-ray signal. As we discuss in Section 5 , the 
present gamma-ray observations show that the average gas density 
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Figure 1. Schematic structure of a wind blown bubble excavated by a star 
cluster into the ISM: R s is the position of the TS, R b is the radius of the FS. 
downstream of the TS and the spectrum of particles escaping the 
ca vity exca v ated by the wind can be considerably af fected by such 
losses, at least for massive clusters. This effect shapes the spectrum of 
CR protons released into the ISM, at least for particles with energies 
such that their transport in the cavity is dominated by advection. We 
specialize these general predictions to the case of the Cygnus cocoon, 
for which detailed spectral and morphological information are now 
available. 

The article is organized as follows: in Section 2 we briefly 
summarize the general properties of the wind blown cavity and 
the role of cooling and clumpiness in the distribution of cold gas. 
In Section 3 , we discuss the main considerations that enter the 
calculation of the maximum energy of accelerated particles at the 
TS. In Section 4 , we describe the numerical solution of the transport 
equation of non-thermal particles in the cavity and the associated 
dif fusi ve particle acceleration at the TS. In Section 5 , we describe 
our results in terms of spectrum of accelerated particles and gamma- 
ray emission. We specialize our findings to the description of the 
spectrum and spatial morphology of the gamma-ray emission from 
the Cygnus cocoon. In Section 6 , we outline our conclusions. 
2  T H E  W I N D  BLOW N  BUBBLE  
In Fig. 1 we show a schematic view of the cavity blown by the 
collective wind of the stars located in the central re gion. We e xplicitly 
assume here to be dealing with a compact star cluster, namely a 
cluster in which the TS is located well outside the region where the 
stars are concentrated. 

Immediately outside the stellar cluster, the winds of the individual 
objects merge into a collective wind, with a velocity v w . The wind 
density is obtained from mass conservation: 
ρw ( r ) = Ṁ 

4 πr 2 v w , r > R c , (1) 
where R c is the radius of the core where the stars are concentrated, 
and Ṁ is the rate of mass-loss due to the collective wind. The impact 
of the supersonic wind with the ISM, assumed here to have a constant 
density ρ0 , produces a FS at position R b , while the shocked wind is 
bound by a TS, at a location R s . The shocked ISM and the shocked 
wind are separated by a contact discontinuity (not shown in Fig. 1 ), 

very close to the FS. The region between the contact discontinuity 
and the FS should contain dense cold interstellar gas, plowed away 
during the expansion of the cavity. Ho we ver, se veral instabilities are 
expected to spread this gas inside the cavity while the bubble is 
being blown. Hence clouds of dense molecular gas and regions of 
dense atomic gas are expected to fill, more or less homogeneously, 
the cavity. We will refer to the density of this gas as ρ (we will use 
the symbol n to indicate the number density in the bubble). One can 
easily check that for typical values of the parameters, the density 
contributed by the wind is completely negligible, especially in terms 
of gamma-ray production. 

Since the typical cooling time-scale of the shocked ISM is only 
∼10 4 yr, while the cooling time for the shocked wind is several 10 7 yr 
(Koo & McKee 1992a , b ), we can safely assume that the wind-blown 
b ubble ev olv es quasi-adiabatically. F ollowing Weav er et al. ( 1977 ) 
and Gupta et al. ( 2018 ), Morlino et al. ( 2021b ) provided some useful 
approximations for the position of the FS and the TS, that we use 
here. The position of the FS is at 
R b ( t) = 139 ρ−1 / 5 

10 Ṁ 1 / 5 −4 v 2 / 5 8 t 3 / 5 10 pc , (2) 
where ρ10 is the ISM density in the region around the star clus- 
ter in units of 10 protons cm –3 , v 8 = v w / (1000 km s −1 ), Ṁ −4 = 
Ṁ / (10 −4 M # yr −1 ) and t 10 is the dynamical time in units of 10 million 
yr. The wind luminosity is then L w = 1 

2 Ṁ v 2 w . The TS is located at 
R s = 24 . 3 Ṁ 3 / 10 

−4 v 1 / 10 
8 ρ

−3 / 10 
10 t 2 / 5 10 pc . (3) 

A more accurate calculation (Weaver et al. 1977 ) shows that the 
results earlier are accurate within ! 10 per cent . We stress again 
that the speed of the TS in the laboratory frame is very low, so that 
the entire bubble structure evolves slowly and can be considered 
as stationary to first approximation. It is worth stressing that the 
formation of a collective wind occurs only for compact clusters that 
have a typical cluster size R c $ R s (see, e.g. Gupta et al. 2020 ). 
2.1 Cooling effects and clumpiness 
In the model described earlier, the v olume a veraged density and 
temperature of the hot-shocked wind can be estimated as 
n b = Ṁ t age 

4 π/ 3 R 3 b = 3 . 6 × 10 −3 ρ3 / 5 
10 Ṁ 2 / 5 −4 v −6 / 5 

8 t −4 / 5 
10 cm −3 (4) 

and 
T b = P 

n b k B & 10 7 L 2 / 5 w, 38 n 3 / 5 10 n −1 
b, −2 t −4 / 5 

10 K , (5) 
respectively, where we introduced n b, −2 = n b / 10 −2 cm −3 . Alterna- 
tiv ely, cooling, that we ne glected in the estimates earlier, leads 
to a reduction of the temperature and therefore a smaller size 
of the bubble. Gupta et al. ( 2016 ) retained the effect of cooling 
and accounted for the radiation pressure from the stars, using 1D 
hydrodynamical simulations. In this way, they predict a bubble size 
that is smaller by ∼ 30 per cent at an age of a few Myr and a 
temperature roughly one order of magnitude smaller than the one 
estimated in equation ( 5 ). These effects appear rather mild in terms 
of the global structure of the bubble and the associated high-energy 
phenomenology. Ho we ver, the simulations of Gupta et al. ( 2016 ), 
being 1D in space, do not account for the possible presence of clumps 
in the bubble that may enhance the effect of cooling. 

The presence of dense clumps in the bubble is especially important 
for the problem discussed here, in that it may affect the strength and 
morphology of the gamma-ray signal. As we discuss in Section 5 , the 
present gamma-ray observations show that the average gas density 
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Figure 1. Schematic structure of a wind blown bubble excavated by a star 
cluster into the ISM: R s is the position of the TS, R b is the radius of the FS. 
downstream of the TS and the spectrum of particles escaping the 
ca vity exca v ated by the wind can be considerably af fected by such 
losses, at least for massive clusters. This effect shapes the spectrum of 
CR protons released into the ISM, at least for particles with energies 
such that their transport in the cavity is dominated by advection. We 
specialize these general predictions to the case of the Cygnus cocoon, 
for which detailed spectral and morphological information are now 
available. 

The article is organized as follows: in Section 2 we briefly 
summarize the general properties of the wind blown cavity and 
the role of cooling and clumpiness in the distribution of cold gas. 
In Section 3 , we discuss the main considerations that enter the 
calculation of the maximum energy of accelerated particles at the 
TS. In Section 4 , we describe the numerical solution of the transport 
equation of non-thermal particles in the cavity and the associated 
dif fusi ve particle acceleration at the TS. In Section 5 , we describe 
our results in terms of spectrum of accelerated particles and gamma- 
ray emission. We specialize our findings to the description of the 
spectrum and spatial morphology of the gamma-ray emission from 
the Cygnus cocoon. In Section 6 , we outline our conclusions. 
2  T H E  W I N D  B L OWN  BUBBLE  
In Fig. 1 we show a schematic view of the cavity blown by the 
collective wind of the stars located in the central re gion. We e xplicitly 
assume here to be dealing with a compact star cluster, namely a 
cluster in which the TS is located well outside the region where the 
stars are concentrated. 

Immediately outside the stellar cluster, the winds of the individual 
objects merge into a collective wind, with a velocity v w . The wind 
density is obtained from mass conservation: 
ρw ( r ) = Ṁ 

4 πr 2 v w , r > R c , (1) 
where R c is the radius of the core where the stars are concentrated, 
and Ṁ is the rate of mass-loss due to the collective wind. The impact 
of the supersonic wind with the ISM, assumed here to have a constant 
density ρ0 , produces a FS at position R b , while the shocked wind is 
bound by a TS, at a location R s . The shocked ISM and the shocked 
wind are separated by a contact discontinuity (not shown in Fig. 1 ), 

very close to the FS. The region between the contact discontinuity 
and the FS should contain dense cold interstellar gas, plowed away 
during the expansion of the cavity. Ho we ver, se veral instabilities are 
expected to spread this gas inside the cavity while the bubble is 
being blown. Hence clouds of dense molecular gas and regions of 
dense atomic gas are expected to fill, more or less homogeneously, 
the cavity. We will refer to the density of this gas as ρ (we will use 
the symbol n to indicate the number density in the bubble). One can 
easily check that for typical values of the parameters, the density 
contributed by the wind is completely negligible, especially in terms 
of gamma-ray production. 

Since the typical cooling time-scale of the shocked ISM is only 
∼10 4 yr, while the cooling time for the shocked wind is several 10 7 yr 
(Koo & McKee 1992a , b ), we can safely assume that the wind-blown 
b ubble ev olv es quasi-adiabatically. F ollowing Weav er et al. ( 1977 ) 
and Gupta et al. ( 2018 ), Morlino et al. ( 2021b ) provided some useful 
approximations for the position of the FS and the TS, that we use 
here. The position of the FS is at 
R b ( t) = 139 ρ−1 / 5 

10 Ṁ 1 / 5 −4 v 2 / 5 8 t 3 / 5 10 pc , (2) 
where ρ10 is the ISM density in the region around the star clus- 
ter in units of 10 protons cm –3 , v 8 = v w / (1000 km s −1 ), Ṁ −4 = 
Ṁ / (10 −4 M # yr −1 ) and t 10 is the dynamical time in units of 10 million 
yr. The wind luminosity is then L w = 1 

2 Ṁ v 2 w . The TS is located at 
R s = 24 . 3 Ṁ 3 / 10 

−4 v 1 / 10 
8 ρ

−3 / 10 
10 t 2 / 5 10 pc . (3) 

A more accurate calculation (Weaver et al. 1977 ) shows that the 
results earlier are accurate within ! 10 per cent . We stress again 
that the speed of the TS in the laboratory frame is very low, so that 
the entire bubble structure evolves slowly and can be considered 
as stationary to first approximation. It is worth stressing that the 
formation of a collective wind occurs only for compact clusters that 
have a typical cluster size R c $ R s (see, e.g. Gupta et al. 2020 ). 
2.1 Cooling effects and clumpiness 
In the model described earlier, the v olume a veraged density and 
temperature of the hot-shocked wind can be estimated as 
n b = Ṁ t age 

4 π/ 3 R 3 b = 3 . 6 × 10 −3 ρ3 / 5 
10 Ṁ 2 / 5 −4 v −6 / 5 

8 t −4 / 5 
10 cm −3 (4) 

and 
T b = P 

n b k B & 10 7 L 2 / 5 w, 38 n 3 / 5 10 n −1 
b, −2 t −4 / 5 

10 K , (5) 
respectively, where we introduced n b, −2 = n b / 10 −2 cm −3 . Alterna- 
tiv ely, cooling, that we ne glected in the estimates earlier, leads 
to a reduction of the temperature and therefore a smaller size 
of the bubble. Gupta et al. ( 2016 ) retained the effect of cooling 
and accounted for the radiation pressure from the stars, using 1D 
hydrodynamical simulations. In this way, they predict a bubble size 
that is smaller by ∼ 30 per cent at an age of a few Myr and a 
temperature roughly one order of magnitude smaller than the one 
estimated in equation ( 5 ). These effects appear rather mild in terms 
of the global structure of the bubble and the associated high-energy 
phenomenology. Ho we ver, the simulations of Gupta et al. ( 2016 ), 
being 1D in space, do not account for the possible presence of clumps 
in the bubble that may enhance the effect of cooling. 

The presence of dense clumps in the bubble is especially important 
for the problem discussed here, in that it may affect the strength and 
morphology of the gamma-ray signal. As we discuss in Section 5 , the 
present gamma-ray observations show that the average gas density 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/523/3/4015/7190644 by G
ran Sasso Science Institute user on 21 O

ctober 2024

In the downstream of the termination shock, the gas density is constant and the velocity drops as 1/r2



Particle acceleration at the Termination Shock
 The TS is expected to be rather strong, M>>1 

 The collision between winds in the core and in the wind region is expected to 
transform some fraction ηB of the kinetic energy of the wind to MHD 
turbulence… at the shock: 

 While the magnetic energy is expected to be injected at some large scale, the 
resulting diffusion coefficient depends on the MHD cascade to small scales  

 One can study different cases (Kolmogorov, Kraichnan, Bohm), non particularly 
compelling…some less credible than others 

 Intermittency can make the effective D(E) more dependent upon quantities 
other than the spectrum (Lemoine 2024) 

 For parameters typical of star clusters, self-generation is not expected to play 
an important role

G. Morlino — Madison, 15 October 2024

Particle acceleration at the wind termination shock
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Shocked ISM
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Acceleration at the collective wind termination shock 
[GM et al. (2019)]
• Particle injected and accelerated at the termination shock

➡Acceleration efficiency ~1-10 %
• Magnetic turbulence produced by MHD instabilities

➡Diffusion coefficient depends on the type of turbulence cascade: 
Kolmogorov, Kraichnan, Bohm

Badmaev et al. (2022)
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If a fraction ηB of the kinetic energy of the wind is transformed 
to magnetic energy, at the TS one may expect a turbulent magnetic 
field of order 
B( R s ) = 7 . 4 η1 / 2 

B Ṁ 1 / 5 −4 v 2 / 5 8 ρ
3 / 10 
10 t −2 / 5 

10 µG . (9) 
This dissipation of kinetic energy into magnetic energy likely results 
in turbulence with a typical scale L c that is expected to be of order 
the size of the star cluster, L c ∼ R c ∼ 1 ÷ 2 pc. 

Assuming that the turbulence follows a Kraichnan cascade, the 
dif fusion coef ficient upstream of the TS can be estimated as 
D( E) ≈ 1 

3 r L ( p) v ( r L ( p) 
L c 

)−1 / 2 
= 1 . 1 × 10 25 ( L c 

1pc 
)1 / 2 

× η
−1 / 4 
B Ṁ −1 / 10 

−4 v −1 / 5 
8 ρ

−3 / 20 
10 t 1 / 5 10 E 1 / 2 GeV cm 2 s −1 , (10) 

where r L ( p ) = pc / eB ( r ) is the Larmor radius of particles of momen- 
tum p in the magnetic field B ( r ). Here we introduced the energy E = 
pc of relativistic particles. 

Other types of turbulent spectra were discussed by Morlino et al. 
( 2021b ). While the estimated maximum energy does not change 
dramatically with different choices of the turbulent cascade, the shape 
of the spectrum of accelerated particles is sensibly affected by such 
choice. For instance, for a Kolmogorov spectrum, the spectrum of 
accelerated particles smoothly softens towards high energies and this 
results in an ef fecti ve maximum energy that is inadequate to describe 
gamma-ray spectra that extend to the ! 100 TeV energy range (see 
Menchiari et al. 2023 , for an e xtensiv e discussion of this issue). 

The ef fecti veness of the process of dissipation of wind kinetic 
energy to magnetic energy is poorly constrained and it is worth 
exploring the possibility that CR induced instabilities may be efficient 
in producing magnetic perturbations in the wind region. If the 
field carried by the wind is particularly low (see further for a 
more quantitative estimate), the non-resonant hybrid instability (Bell 
2004b ) may excite magnetic perturbations on spatial scales that, at 
saturation of the instability, are expected to be comparable with the 
Larmor radius of the particles dominating the driving current at a 
given location. In this case, the maximum value of the pressure in 
the form of amplified magnetic field at the shock reads 
δB 2 1 
4 π = v s 

c ρ1 v 2 s ξCR 
& , (11) 

where we assumed a spectrum of accelerated particles ∝ p −4 and 
we introduced ξCR as the fraction of ram pressure ρ1 u 2 w that gets 
channelled into CR pressure, and & = ln ( p max 

m p c ) ∼ 10 (see also 
equation ( 19 )). This condition can be achieved if there is enough 
time for the instability to grow for a sufficient number of e-folds 
(typically ∼5 − 10 e-folds would suffice), as we discuss further in 
Section 3 . For values of the parameters that are typical of a massive 
star cluster, the saturated magnetic field would be 
δB 1 ≈ 0 . 043 ξCR / 0 . 05 

&/ 10 Ṁ 1 / 5 −4 v 9 / 10 
8 ρ

3 / 10 
10 t −2 / 5 

10 µG . (12) 
This self-generated turbulence would be such that, for a spectrum 
of accelerated particles close to ∼E −2 , the corresponding diffusion 
coefficient would be Bohm-like. Spectra steeper than E −2 would lead 
to a lack of power on large scales and a more pronounced energy 
dependence than linear in the diffusion coefficient. If the Bohm 
condition could be achieved, the corresponding coefficient would 
read 
D( E) ≈ r L v 

3 = 7 . 7 × 10 22 E GeV Ṁ − 1 
5 

−4 v − 9 
10 

8 ρ
− 3 

10 
10 t 2 5 

10 cm 2 s −1 . (13) 

The excitation of the non-resonant instability occurs only if the pre- 
existing magnetic field is smaller than the value in equation ( 12 ). 
Moreo v er, as discussed further, the saturation level in equation ( 12 ) 
is reached only several e-folds are allowed during one advection time 
upstream. 

Independent of the choice of the diffusion coefficient, downstream 
of the TS, we assume that the magnetic field is only compressed by the 
standard factor √ 

(2 R 2 + 1) / 3 , that for a strong shock (compression 
factor R = 4) becomes √ 

11 . For the Kraichnan case, D 2 ≈ 0.55 D 1 . 
Clearly the downstream diffusion coefficient can be smaller than 
this estimate suggests, if other processes, perhaps of hydromagnetic 
origin, such as the Richtmyer–Meshkov instability (Giacalone & 
Jokipii 2007 ), lead to enhanced turbulence behind the shock. We 
will discuss some implications of this scenario further. 

The functional shape of the diffusion coefficient as in equation ( 10 ) 
is expected to hold up to energies for which the Larmor radius equals 
the coherence scale L c . At larger energies the standard D ( E ) ∝ E 2 
appears, as can be found both analytically and using simulations of 
test particle transport in different types of synthetic turbulence (see 
for instance Subedi et al. 2017 ; Dundovic et al. 2020 , and references 
therein). 
3  M A X I M U M  M O M E N T U M  
An estimate of the maximum energy that can be achieved at the 
TS through DSA can be easily obtained even without a formal 
solution of the transport equation, although, as discussed by Morlino 
et al. ( 2021b ), special care is needed in interpreting the physical 
meaning of such maximum momentum: due to the combination of 
spherical symmetry of the problem and different energy dependence 
of the diffusion coefficient, the spectrum of accelerated particles is 
characterized by a pronounced cutoff at the maximum momentum 
in the case of Bohm diffusion, while a milder energy dependence 
in D ( E ) results in a gradual roll-off, more similar to a spectral 
steepening that starts at p ' p max . The case of a Kraichnan turbulence 
is sort of intermediate between Bohm and Kolmogorov and, as 
we discuss further, provides the best description of the available 
observations. 

The maximum momentum is defined by the most stringent among 
the following conditions: 

(i) the diffusion length upstream must be smaller that the radius 
of the TS: for the Kraichnan case this condition reads 
p (1) 

max = 4 × 10 5 ( L c 
1pc 

)−1 
η

1 / 2 
B Ṁ 4 / 5 −4 v 13 / 5 

8 ρ
−3 / 10 
10 t 2 / 5 10 GeV / c . (14) 

If the non-resonant streaming instability is excited and can saturate 
to its nominal value (Bohm diffusion in equation ( 13 )), this condition 
becomes 
p (1) 

max = 9 . 8 × 10 3 Ṁ 1 / 2 −4 v 2 8 GeV / c . (15) 
(ii) The diffusion length downstream must not exceed the size of 

the downstream region, which implies, for the Kraichnan case 
p (2) 

max = 2 . 7 × 10 5 ( L c 
1pc 

)−1 
η

1 / 2 
B Ṁ 3 / 5 −4 v 16 / 5 

8 ρ
−1 / 10 
10 t 4 / 5 10 GeV / c . (16) 

For the case of Bohm self-generated diffusion, the condition reads 
p (2) 

max = 4 . 7 × 10 4 Ṁ 2 / 5 −4 v 23 / 10 
8 ρ

1 / 10 
10 t 1 / 5 10 GeV / c . (17) 

(iii) For the Kraichnan case the scattering should occur in the 
inertial range of the turbulence, namely the Larmor radius should 
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Particle acceleration at the Termination Shock
 The TS behaves as a standard spherical Newtonian shock  

 While the main limitation to particle acceleration at a shock is usually due to 
escape from upstream, here the upstream is closed! All particles remain inside 

 Transport equation needs to be solved accounting for the spherical 
symmetry 

 Particles with low energies probe the region very close to the shock surface 
(weak effect of sphericity) —> standard power law spectrum 

 Higher energy particles move farther from the shock and feel gradually lower 
effective plasma speed due to sphericity —> gradually steeper spectrum  

 How spectrum approaches pmax depends on D(E) more than for a standard 
planar shock or an expanding spherical shock (Morlino+21)

Particle acceleration in winds of star clusters 6097

simplistic, they have also stimulated the search for alternative sources
of CRs, with special care for those that produce a spectrum extending
to the knee energy. In this context, stellar clusters (Reimer, Pohl &
Reimer 2006), OB associations (Voelk & Forman 1982; Bykov &
Toptygin 2001), and supperbubbles (Bykov 2001; Parizot et al. 2004)
have for instance been proposed.

It has especially been speculated that the winds of massive stars
may be a suitable location for the acceleration of CRs (Cesarsky &
Montmerle 1983; Webb, Axford & Forman 1985; Gupta et al. 2018;
Bykov et al. 2020). Moreover, recently the gamma-ray emission from
the region around a few compact star clusters has been measured,
including Westerlund 1 (Abramowski et al. 2012), Westerlund 2
(Yang, de Oña Wilhelmi & Aharonian 2018), Cygnus cocoon
(Ackermann & et al. 2011; Aharonian, Yang & de Oña Wilhelmi
2019), NGC 3603 (Saha et al. 2020), BDS2003 (Albert et al. 2021),
W40 (Sun et al. 2020), and 30 Doradus in the LMC (H. E. S. S.
Collaboration 2015). These observations have been used to infer the
spatial distribution of CRs and their energy budget, supporting the
scenario in which a sizable fraction of the wind kinetic energy is
converted to non-thermal particles and, at the same time, maximum
energies >100 TeV are reached. These findings would, than, suggest
that stellar clusters can substantially contribute to the flux of Galactic
CRs.

Further support to such a conclusion comes from the analysis
of the 22Ne/20Ne abundance in CRs, which is a factor ∼5 larger
than for the solar wind (Binns et al. 2006). This result is not easy
to accommodate in the framework of particle acceleration at SNR
shocks alone (Prantzos 2012) while can be more easily accounted
for if CRs are at least partly accelerated out of material contained in
the winds of massive stars (Gupta et al. 2020).

Here, we show that the termination shock formed as a result of
the interaction of the intense collective wind of the star cluster with
the ISM is a potentially interesting site for particle acceleration up
to ∼PeV energies, for several reasons: (1) particle escape from the
upstream region (in the direction of the star cluster itself) is forbidden
because of the geometry of the problem; (2) if a relatively small
fraction (∼ 10 per cent) of the wind kinetic energy is dissipated
to magnetic energy, particle diffusion around the shock can be
reduced, thereby shortening the acceleration time; (3) if the kinetic
luminosity of the star cluster is large enough (!3 × 1038 erg s−1)
then the maximum energy is indeed in the ∼PeV range; (4) in rather
common situations around the termination shock, the spectrum of
accelerated particles may be somewhat steeper than E−2, as required
by observations of CRs on Galactic scale (Evoli, Aloisio & Blasi
2019; Evoli et al. 2020).

The article is organized as follows: in Section 2, we briefly
describe the structure of the environment around the star cluster and
the properties of the termination shock where particle acceleration
is expected to take place. In Section 3, we discuss the diffusion
properties of particles inside the wind bubble while in Section 4,
we describe in detail the solution of the diffusive shock acceleration
(DSA) problem at the termination shock and we derive an expression
for the maximum energy of accelerated particles. In Section 5, we
summarize our findings and we comment on the possibility that star
clusters may in fact be prominent contributors to the flux of CRs in
the Galaxy.

2 TH E BU B B L E ’ S ST RU C T U R E

The bubble excavated by the collective stellar wind launched by the
star cluster is schematically illustrated in Fig. 1: the central part is

Figure 1. Schematic structure of a wind bubble excavated by a star cluster
into the ISM: Rs marks the position of the termination shock, Rcd the contact
discontinuity, and Rfs the forward shock.

filled with the wind itself, expanding with a velocity vw and density

ρ(r) = Ṁ

4πr2vw
, r > Rc, (1)

where Rc is the radius of the core where the stars are concentrated,
and Ṁ is the rate of mass-loss due to the collective wind. The impact
of the supersonic wind with the ISM, assumed here to have a constant
density ρ0, produces a forward shock at position Rfs, while the
shocked wind is bound by a termination shock, at a location Rs.
The shocked ISM and the shocked wind are separated by a contact
discontinuity at Rcd. The typical cooling time-scale of the shocked
ISM is only ∼104 yr, while the cooling time for the shocked wind
is several 107 yr which is comparable with the typical age of these
systems (Koo & McKee 1992a, b). As a consequence, the wind-
blown bubble spends the largest part of its life in a quasi-adiabatic
phase, meaning that the shocked wind is adiabatic while the shocked
ISM is cold and dense and compressed in a very thin layer, such
that we can approximate Rcd $ Rfs ≡ Rb. Hence most of the volume
of the bubble is filled with the wind and the shocked wind. Below,
following Weaver et al. (1977) and Gupta et al. (2018) we provide a
simple approximation for the position in time of the forward shock
(FS) and the termination shock (TS). The mass accumulated at the
FS while moving in the ISM is M(R) =

∫ R

0 4πr2ρ0dr , where ρ0 is
the external density. The momentum of the material accumulated in
the thin shell between Rcd and Rfs is M(R)Ṙ and changes because of
the work done by the pressure P in the hot bubble

d
dt

[
M(R)Ṙ

]
= 4πR2P . (2)

On the other hand, the energy in the bubble is ε = 4
3πR3 P

γg−1 , where
γ g is the adiabatic index, and it changes according to

d
dt

[
4
3
πR3 P

γg − 1

]
= Lw + 4πR2ṘP − Lcool, (3)

where Lw = 1
2 Ṁv2

w is the wind luminosity and Lcool is the cooling
rate. In the following, for the purpose of a simple estimate we
will neglect this cooling term which is only important at very

MNRAS 504, 6096–6105 (2021)
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Particle acceleration at the Termination Shock

 If a few percent of the wind kinetic energy is channeled into MHD 
turbulence —> diffusivity in the bubble reduced by 2-3 orders of magnitude 
wrt ISM 

 Maximum energy determined by the size of the confinement region ~ Rs 

 Easily pmax~PeV but for Kraichnan and Kolmogorov turbulence, 
substantial suppression at p<<pmax 

 Recall that Bohm diffusion corresponds to equal power on all scales, 
unjustified unless for self-generation with a p-4 spectrum (not the case here) 

 The effective maximum energy much smaller than the nominal value 

 This seems confirmed by what we see in gamma rays!

6104 G. Morlino et al.

Figure 4. Thick lines: distribution function of CR at the shock for different
diffusion coefficients. Thin lines: corresponding escaping flux. The results
refer to the benchmark case described in the text.

Table 1. Values of pm1, pm2, and effective maximum momentum p̂max for
Bohm, Kraichnan, and Kolmogorov cases shown in Fig. 3.

Diffusion D2/D1 pm1 pm2 p̂max
type (PeV c−1) (PeV c−1) (PeV c−1)

Bohm 0.30 4.0 2.8 2.14
” 0.02 4.0 40 2.80

Kraichnan 0.55 3.2 0.48 0.18
” 0.07 3.2 32 0.30

Kolmogorov
0.67 2.6 0.08 0.01

” 0.10 2.6 26 0.02

Figure 5. Spatial distribution function of CRs normalized at the shock value
in the Kraichnan case and for different momenta as shown in the legend. Top
and bottom panels show how the results change decreasing the value of D2
from D2/D1 = 0.55 (top) to 0.07 (bottom).

clearly leads high-energy particles to diffuse on scales that exceed
the radius of the TS, so that they eventually reach the TS on the other
side with respect to the central star cluster. When this happens, the
effective plasma velocity felt by particles is "vw, hence the energy
gain drops to zero and particle acceleration becomes ineffective. The
distribution function downstream of the shock becomes flat only for p
" pmax , while for momenta close to pmax the particle density steadily
decreases while approaching the bubble boundary.

5 D I S C U S S I O N A N D C O N C L U S I O N S

There are mainly two reasons for the rising interest of the CR
community in star clusters: the first is that if the accelerated particles
are extracted from the material expelled by massive stars in the form
of stellar winds, the anomalous 22Ne/20Ne abundance ratio, that has
been known for quite some time (Binns et al. 2006), can be accom-
modated more easily (Gupta et al. 2020) than by using SNR shocks
alone (Prantzos 2012). It should be said that this is all but a trivial
conclusion, in that the abundance of 22Ne in stellar winds depends
upon details of the convection of elements in the surface layers of
massive stars. But for reasonable models of such phenomenon, it
appears that a suitable combination of CRs from massive stars and
from SNR shocks should be able to explain observations.

The second reason for interest in star clusters is that they have
been long suspected (Cesarsky & Montmerle 1983; Webb et al. 1985;
Gupta et al. 2018; Bykov et al. 2020) to be potential sources of CRs
with energies up to the knee. This second aspect turns out to be
especially appealing given the many problems encountered by the
theory of DSA applied to SNR shock in accounting for such high
energies [see for instance Cristofari et al. (2020) and recent reviews
Blasi (2013, 2019)]. The possibility of accelerating particles up to the
knee in SNRs might be limited to very powerful and rare SN events
where the growth of the non-resonant instability may be sufficient to
reach ∼1015 eV at the beginning of the Sedov–Taylor phase of the
shock evolution in the surrounding medium.

In the present article, we presented the theory of DSA at the
termination shock that arises from the interaction between the
collective wind of a star cluster and the surrounding ISM. We solved
the stationary transport equation for CRs in spherical symmetry,
with a velocity profile that reflects the one expected from the wind
region and the bubble region of a star cluster. No restrictions are to
be imposed on the spatial and energy dependence of the diffusion
coefficient. The solution provides both the spectrum of accelerated
particles at any location in the wind and the bubble. The maximum
energy arises in a natural way from the transport of particles in the
shock region.

As one might expect, the spectrum of accelerated particles, at p
" pmax , is a power law, with the same slope as obtained for a planar
shock. This is intuitively clear since the curvature of the shock can
affect the particles’ diffusion only when the diffusion length is of
the same order as the radius of the termination shock. When that
happens, the effect of geometry is no longer negligible and one
should expect deviations from the standard power law. We showed
that the strength of such deviations is very sensitive to the momentum
dependence of the diffusion coefficient in the upstream region, being
the strongest for weak energy dependence. We investigated in detail
three choices, corresponding to a Kolmogorov, Kraichnan, and flat
spectrum of perturbations. The latter gives rise to Bohm diffusion. In
the case of a Kolmogorov spectrum, the deviation from a power law
starts a few orders of magnitude in momentum below pmax , while the
transition is rather sharp at ∼pmax for the case of Bohm diffusion.
The Kraichnan case is intermediate between the two but somewhat
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not exceed the coherence scale L c 
p (3) 

max = 6 . 8 × 10 5 ( L c 
1pc 

)−1 
η

1 / 2 
B Ṁ 1 / 5 −4 v 2 / 5 8 ρ

3 / 10 
10 t −2 / 5 

10 GeV / c . (18) 
For the case of self-generated turbulence, this latter condition is 

replaced by the requirement that the non-resonant instability has 
enough time to grow. If v A is the Alfv ́en speed in the pre-existing 
magnetic field B 0 , the growth rate of the instability can be estimated 
as γ W = k m v A , where k m is the wavenumber where the instability 
grows the fastest, namely k m B 0 = 4 π

c e n CR v w , and the density of 
CR particles at the shock is estimated as 
n CR ( > E) = ξCR ρw ( R s ) v 2 w 

& E , (19) 
and & ∼ ln ( E max / E min ) ∼ 10. It is worth stressing that γ W does not 
depend upon the pre-existing magnetic field B 0 , and can be written 
as 
γW = 5 × 10 −9 Ṁ 1 / 5 −4 v 12 / 5 

8 ρ
3 / 10 
10 t −2 / 5 

10 E −1 
GeV s −1 . (20) 

If we introduce the advection time upstream, τ adv = R s / v w , the 
condition that the non-resonant instability grows is that γ W τ adv ∼
ζ , with ζ ∼ 5 − 10. This condition results in an upper limit on the 
energy of the particles that can possibly be accelerated at the TS 
p max = 3 . 7 × 10 3 ζ−1 v 3 / 2 8 Ṁ 1 / 2 −4 GeV / c . (21) 
One can easily see that even for the unrealistic value ζ ∼ 1, this 
condition limits the maximum energy of the accelerated particles to 
be exceedingly small and in any case too low to account for the high- 
energy gamma-ray emission of the Cygnus cocoon. This is due to the 
fact that the non-resonant instability grows too slowly in the upstream 
plasma to allow for turbulence to grow and scatter particles. Based 
on this finding, we conclude that the assumption of Bohm diffusion 
is, in this context, not justified and in the rest of the discussion further 
we focus on the Kraichnan case. 

The actual value of the maximum momentum is determined by the 
most stringent condition among those listed earlier, which depends 
upon the values of the parameters (mass-loss rate, wind speed, 
density of the ISM, age of the star cluster, efficiency of conversion 
to magnetic turbulence, and coherence scale of the turbulence). The 
strongest dependence is the one on the wind speed. For the case of 
Kraichnan turbulence the dependence of the maximum momentum 
on the mass-loss rate and the wind speed is illustrated in the contour 
plot in Fig. 2 , where we show log ( p max c/ PeV) for parameters that are 
thought to be appropriate for the Cygnus cocoon (age of 3 million yr, 
density of the ISM outside the cavity of ∼ 10 cm −3 and coherence 
scale of Kraichnan turbulence chosen as L c = 1 pc). One can see 
that for the maximum momentum to fall in the range around 1 PeV 
( log ( p max / PeV) $ 0), either very fast winds or large rates of mass- 
loss are required. We will see further that even these conditions may 
not be sufficient to make a typical star cluster a PeVatron. 

In the discussion earlier and in all of this article we have not 
considered the spatial dependence of the dif fusion coef ficient. It may 
be useful to comment on the possible effects of such an assumption, 
especially in the direction of considering effects that may reduce 
the dif fusion coef ficient and lead to potentially larger values of the 
maximum momentum of accelerated particles. Let us start from the 
upstream region and assume that the diffusion coefficient upstream 
of the TS depends on r , in the direction of becoming smaller moving 
inw ard. One w ay (certainly not unique) to do so is to assume that the 
same fraction of kinetic energy of the wind at distance r is converted 
to magnetic energy. It is hard to imagine a stronger radial dependence, 

Figure 2. Contour plot of the log ( cp max / PeV) as a function of the rate of 
mass-loss and the wind speed. 
in that it would easily lead to more than 10 per cent conversion 
efficiency at small radii, with huge dynamical implications for the 
wind. If ηB is independent of r , the resulting magnetic field scales as 
( r / R s ) −1/2 (see equation ( 9 )). For a Kraichnan turbulence spectrum, 
this would translate to a dif fusion coef ficient D ( E , r ) = D ( E )( r / R s ) 1/4 , 
where D ( E ) is given in equation ( 10 ). Clearly the dependence on r 
is very weak: for a given energy, reducing the diffusion coefficient 
by one order of magnitude would require to reach radii r ∼ 10 −4 R s , 
well inside the core of the star cluster, where none of this description 
would apply. The radial dependence would be even weaker for a 
Kolmogorov spectrum of the turbulence ( D ( E , r ) = D ( E )( r / R s ) 1/6 ). 
It follows that it is very difficult to use a speculative reduction in 
the dif fusi vity in the inner regions of the wind as a possible way to 
increase the maximum energy of the accelerated particles. 

Let us now consider the possibility that the diffusion coefficient 
downstream is substantially reduced with respect to the one at the 
shock, perhaps close to the edge of the bubble. This scenario would 
certainly increase the confinement time downstream, but cannot lead 
to a much larger value of p max because at some point the conditions 
upstream become dominant: in other words, if one could increase 
p (2) 

max in the formalism introduced earlier, so that p (2) 
max > p (1) 

max , 
then the most stringent condition would be the one associated with 
diffusion upstream and the maximum momentum would saturate at 
a value closer to p (1) 

max . We will comment further on this point in 
Section 5.1 . 

Based on these considerations, we argue that the estimate of the 
maximum momentum derived in this section and calculated more 
carefully further is rather solid and that the only way to ef fecti vely 
increase the maximum momentum is to increase the mass-loss rate 
and/or the wind velocity of the star cluster. 
4  TRANSPORT  E QUAT I O N  IN  T H E  C AV I T Y  
A N D  DSA  AT  T H E  TS  
The transport equation for non-thermal particles in the cavity can be 
written in spherical coordinates as follows 

1 
r 2 ∂ ∂ r 

[
r 2 D( r, p) ∂ f 

∂ r 
]

− ˜ u ( r) ∂ f 
∂ r 

+ 1 
r 2 d 

[
r 2 ̃  u ( r) ]
dr p 

3 ∂ f ∂ p − 1 
p 2 ∂ ∂ p [ṗ p 2 f ] + Q ( r, p) = 0 , (22) 

where ˜ u ( r) is the mean speed of the scattering centers in the shock 
frame, D ( r , p ) is the dif fusion coef ficient, ṗ < 0 is the rate of energy 
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Particle acceleration at the Termination Shock
 The transport of particles in the bubble, including acceleration at the TS is described by:
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spatial scattering is not very sensitive to the isotropy of motion of 
perturbations, stochastic acceleration is only efficient when there 
is roughly the same number of wav es mo ving in all directions. 
This makes the modelling of this process somewhat hard, especially 
outside the boundaries of a quasi-linear treatment and we decided 
here to exclude it from our calculations, though being aware of the 
potential implications of this assumption. 
3  ACCELERATION  A N D  T RANSPORT  O F  C R  
P ROTONS  A N D  N U C L E I  
The transport of protons in the bubble excavated by the wind is 
described by the transport equation introduced and solved in Blasi & 
Morlino ( 2023 ), which reads: 

∂ 
∂ r 

[
˜ u r 2 N − r 2 D ∂ N 

∂ r 
]

= E ∂ N 
∂ E 

[
1 
3 d( ̃  u r 2 ) 

d r − r 2 b 
E 
]

+ N [1 
3 d( ̃  u r 2 ) 

d r − r 2 b ′ ] , (6) 
where N ( E, r)d E = 4 πp 2 f ( r, p)d p is the distribution function of 
non-thermal particles as a function of energy, f being the distribution 
function in phase space. For simplicity, below we focus on relativistic 
particles, so that E # pc. In equation ( 6 ) we omitted, for simplicity, 
the source term. The normalization is calculated a posteriori in 
terms of an efficiency of conversion of the ram pressure ρw v 2 w 
into pressure of non-thermal particles. We introduced the rate of 
energy losses b( E, r) = c ̇p , and its deri v ati ve with respect to energy 
b ′ ( E, r) = ∂ b( E, r) / ∂ E. For high-energy protons energy losses are 
dominated by inelastic pp scattering (see Blasi & Morlino 2023 ). 
The ef fecti v e v elocity felt by particles, ˜ u = u + ηv A , is the sum of 
the plasma speed u ( r) and the net speed of the waves responsible 
for the particle scattering expressed as η times the Alfv ́en speed 
v A . When the parameter η is chosen to be zero (equal number of 
wav es mo ving in both directions), the effect of scattering centres 
disappears. 

For nuclei, the equation is similar but the main channel responsible 
for particle evolution is due to spallation reactions, treated as 
catastrophic losses. Hence the transport equation for nuclei of type 
α can be written as: 

∂ 
∂ r 

[
˜ u r 2 N α − r 2 D ∂ N α

∂ r 
]

= E ∂ N α
∂ E 1 

3 d( ̃  u r 2 ) 
d r 

+ 1 
3 d( ̃  u r 2 ) 

d r N α − N α
τsp ,α + ∑ 

α′ >α

N α′ 
τsp ,α′ → α . (7) 

Here E denotes the energy per nucleon of the nucleus of type α. Since 
we are still focusing on relativistic particles we safely neglected 
energy losses of the nuclei and included only spallation, with a 
characteristic time τsp ,α . The time-scale τsp ,α′ → α relates the spallation 
of a heavier nucleus to a nucleus of type α. 

For a detailed prediction of the physical behaviour of nuclei in the 
environment of a star cluster, a full treatment of the nuclear cascade 
from any heavier nucleus to the nuclear specie α should be employed. 
Ho we ver here we are only interested in making a physical point: the 
spectrum of nuclei is made harder by the effect of spallation. In order 
to make this point we focus on a few simpler cases: (1) we assume 
that 4 He is injected at the shock (a reasonable assumption since 3 He 
is secondary in nature) and that it fragments to 3 He. We solve the 
transport equation, in its stationary form, for both species. We recall 
that the He spectrum that most experiments refer to is the total flux, to 
be interpreted as the sum of 3 He and 4 He. (2) We consider the cases 
of O and Fe nuclei that, to a good approximation, can be considered 

as pure primary nuclei and use this calculation to make a quantitative 
assessment of the role of spallation for nuclei heavier than He. 

In equation ( 7 ), the total cross-section for the spallation of a 
nucleus of mass number A has been taken as σA = 45 A 0 . 7 mb. Here, 
3 He has been considered as purely secondary product of spallation 
reactions of 4 He, although the branching ratio of this channel has 
been increased artificially to 0.75 to mimic the contribution of heavier 
nuclei that have not been included explicitly in the spallation chain. 
In other words σ ( 4 He → 3 He ) = 0 . 75 σ4 . 

We solve equation ( 6 ) using a mixed technique, numerical and 
iterative, as introduced and discussed in Blasi & Morlino ( 2023 ) 
for the case of protons. For a given ansatz on the solution at the 
shock, N 0 ( E) 2 , equation ( 6 ) is solved numerically upstream and 
downstream using a grid discretized in radius and energy. The two 
solutions are matched at r = R s so that N = N 0 . Such a solution is 
used to determine D ∂ N 

∂ r | 1 , 2 as functions of energy. At this point one 
can introduce 
D 1 , 2 ∂ N 

∂ r | 1 , 2 = D 1 , 2 ( E ) ̃  u 1 , 2 N 0 ( E ) , (8) 
so that equation ( 6 ) becomes: 
E d N 0 

d E = N 0 [−3 D 2 ( E) 
1 − R + 3 R 

1 − R ( D 1 ( E) − 1) − R + 2 
R − 1 

]
, (9) 

where we introduced the compression factor of velocities of the 
scattering centres at the TS, R = ˜ u 1 / ̃  u 2 . The solution of equation 
( 9 ) can now be written as 
N 0 ( E) = KE − R + 2 

R −1 
× exp {∫ E 

0 d E ′ 
E ′ 

[
− 3 D 2 

1 − R + 3 R 
1 − R ( D 1 − 1) ]} . (10) 

It is useful to notice that in the case of a plane-parallel shock, D 1 → 1 
and D 2 → 0, so that the solution reduces to the standard power 
la w N 0 ∝ E − R + 2 

R −1 . The e xponential term in equation ( 10 ) takes into 
account both the spherical symmetry and the effect of energy losses 
through D 1 and D 2 . The specific energy dependence of D 1 , 2 shapes 
the spectrum of accelerated particles as a result of proximity to 
the maximum energy and because of the spherical topology of the 
outflow. 

Equation ( 7 ) is solved in a similar way for primary nuclei. For 
secondary nuclei the situation is slightly more complicated: in such a 
case there is no injection term at the shock, while the production term 
is spread in space due to spallation. Because of this, secondary nuclei 
produced in the region upstream of the TS are advected toward the 
shock and are subject to some level of acceleration, an effect similar 
to that described for SNRs by Blasi ( 2009 ) for electron–positron 
secondary pairs, by Berezhko et al. ( 2003 ), Mertsch & Sarkar ( 2009 ) 
for secondary boron and by Blasi & Serpico ( 2009 ) for antiprotons. 
In order to correctly describe this effect it is useful to relate the 
deri v ati ve upstream of the shock to the production rate upstream. To 
do so, we integrate the transport equation from r = 0 to r = R s to 
obtain: 
D ∂ N α

∂ r 
∣∣∣∣
1 = ˜ u 1 N α, 0 + δuN α, 0 − R s ∫ 1 

0 d ξ ξ 2 N α
τsp ,α , (11) 

2 We initialize N 0 ( E) using a pure power law with the expected slope, but we 
checked that the result does not change by changing this initial guess. 
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spatial scattering is not very sensitive to the isotropy of motion of 
perturbations, stochastic acceleration is only efficient when there 
is roughly the same number of wav es mo ving in all directions. 
This makes the modelling of this process somewhat hard, especially 
outside the boundaries of a quasi-linear treatment and we decided 
here to exclude it from our calculations, though being aware of the 
potential implications of this assumption. 
3  ACCELERATION  A N D  T RA NS PORT  O F  C R  
P ROTONS  A N D  N U C L E I  
The transport of protons in the bubble excavated by the wind is 
described by the transport equation introduced and solved in Blasi & 
Morlino ( 2023 ), which reads: 

∂ 
∂ r 

[
˜ u r 2 N − r 2 D ∂ N 

∂ r 
]

= E ∂ N 
∂ E 

[
1 
3 d( ̃  u r 2 ) 

d r − r 2 b 
E 
]

+ N [1 
3 d( ̃  u r 2 ) 

d r − r 2 b ′ ] , (6) 
where N ( E, r)d E = 4 πp 2 f ( r, p)d p is the distribution function of 
non-thermal particles as a function of energy, f being the distribution 
function in phase space. For simplicity, below we focus on relativistic 
particles, so that E # pc. In equation ( 6 ) we omitted, for simplicity, 
the source term. The normalization is calculated a posteriori in 
terms of an efficiency of conversion of the ram pressure ρw v 2 w 
into pressure of non-thermal particles. We introduced the rate of 
energy losses b( E, r) = c ̇p , and its deri v ati ve with respect to energy 
b ′ ( E, r) = ∂ b( E, r) / ∂ E. For high-energy protons energy losses are 
dominated by inelastic pp scattering (see Blasi & Morlino 2023 ). 
The ef fecti v e v elocity felt by particles, ˜ u = u + ηv A , is the sum of 
the plasma speed u ( r) and the net speed of the waves responsible 
for the particle scattering expressed as η times the Alfv ́en speed 
v A . When the parameter η is chosen to be zero (equal number of 
wav es mo ving in both directions), the effect of scattering centres 
disappears. 

For nuclei, the equation is similar but the main channel responsible 
for particle evolution is due to spallation reactions, treated as 
catastrophic losses. Hence the transport equation for nuclei of type 
α can be written as: 

∂ 
∂ r 

[
˜ u r 2 N α − r 2 D ∂ N α

∂ r 
]

= E ∂ N α
∂ E 1 

3 d( ̃  u r 2 ) 
d r 

+ 1 
3 d( ̃  u r 2 ) 

d r N α − N α
τsp ,α + ∑ 

α′ >α

N α′ 
τsp ,α′ → α . (7) 

Here E denotes the energy per nucleon of the nucleus of type α. Since 
we are still focusing on relativistic particles we safely neglected 
energy losses of the nuclei and included only spallation, with a 
characteristic time τsp ,α . The time-scale τsp ,α′ → α relates the spallation 
of a heavier nucleus to a nucleus of type α. 

For a detailed prediction of the physical behaviour of nuclei in the 
environment of a star cluster, a full treatment of the nuclear cascade 
from any heavier nucleus to the nuclear specie α should be employed. 
Ho we ver here we are only interested in making a physical point: the 
spectrum of nuclei is made harder by the effect of spallation. In order 
to make this point we focus on a few simpler cases: (1) we assume 
that 4 He is injected at the shock (a reasonable assumption since 3 He 
is secondary in nature) and that it fragments to 3 He. We solve the 
transport equation, in its stationary form, for both species. We recall 
that the He spectrum that most experiments refer to is the total flux, to 
be interpreted as the sum of 3 He and 4 He. (2) We consider the cases 
of O and Fe nuclei that, to a good approximation, can be considered 

as pure primary nuclei and use this calculation to make a quantitative 
assessment of the role of spallation for nuclei heavier than He. 

In equation ( 7 ), the total cross-section for the spallation of a 
nucleus of mass number A has been taken as σA = 45 A 0 . 7 mb. Here, 
3 He has been considered as purely secondary product of spallation 
reactions of 4 He, although the branching ratio of this channel has 
been increased artificially to 0.75 to mimic the contribution of heavier 
nuclei that have not been included explicitly in the spallation chain. 
In other words σ ( 4 He → 3 He ) = 0 . 75 σ4 . 

We solve equation ( 6 ) using a mixed technique, numerical and 
iterative, as introduced and discussed in Blasi & Morlino ( 2023 ) 
for the case of protons. For a given ansatz on the solution at the 
shock, N 0 ( E) 2 , equation ( 6 ) is solved numerically upstream and 
downstream using a grid discretized in radius and energy. The two 
solutions are matched at r = R s so that N = N 0 . Such a solution is 
used to determine D ∂ N 

∂ r | 1 , 2 as functions of energy. At this point one 
can introduce 
D 1 , 2 ∂ N 

∂ r | 1 , 2 = D 1 , 2 ( E ) ̃  u 1 , 2 N 0 ( E ) , (8) 
so that equation ( 6 ) becomes: 
E d N 0 

d E = N 0 [−3 D 2 ( E) 
1 − R + 3 R 

1 − R ( D 1 ( E) − 1) − R + 2 
R − 1 

]
, (9) 

where we introduced the compression factor of velocities of the 
scattering centres at the TS, R = ˜ u 1 / ̃  u 2 . The solution of equation 
( 9 ) can now be written as 
N 0 ( E) = KE − R + 2 

R −1 
× exp {∫ E 

0 d E ′ 
E ′ 

[
− 3 D 2 

1 − R + 3 R 
1 − R ( D 1 − 1) ]} . (10) 

It is useful to notice that in the case of a plane-parallel shock, D 1 → 1 
and D 2 → 0, so that the solution reduces to the standard power 
la w N 0 ∝ E − R + 2 

R −1 . The e xponential term in equation ( 10 ) takes into 
account both the spherical symmetry and the effect of energy losses 
through D 1 and D 2 . The specific energy dependence of D 1 , 2 shapes 
the spectrum of accelerated particles as a result of proximity to 
the maximum energy and because of the spherical topology of the 
outflow. 

Equation ( 7 ) is solved in a similar way for primary nuclei. For 
secondary nuclei the situation is slightly more complicated: in such a 
case there is no injection term at the shock, while the production term 
is spread in space due to spallation. Because of this, secondary nuclei 
produced in the region upstream of the TS are advected toward the 
shock and are subject to some level of acceleration, an effect similar 
to that described for SNRs by Blasi ( 2009 ) for electron–positron 
secondary pairs, by Berezhko et al. ( 2003 ), Mertsch & Sarkar ( 2009 ) 
for secondary boron and by Blasi & Serpico ( 2009 ) for antiprotons. 
In order to correctly describe this effect it is useful to relate the 
deri v ati ve upstream of the shock to the production rate upstream. To 
do so, we integrate the transport equation from r = 0 to r = R s to 
obtain: 
D ∂ N α

∂ r 
∣∣∣∣
1 = ˜ u 1 N α, 0 + δuN α, 0 − R s ∫ 1 

0 d ξ ξ 2 N α
τsp ,α , (11) 

2 We initialize N 0 ( E) using a pure power law with the expected slope, but we 
checked that the result does not change by changing this initial guess. 
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spatial scattering is not very sensitive to the isotropy of motion of 
perturbations, stochastic acceleration is only efficient when there 
is roughly the same number of wav es mo ving in all directions. 
This makes the modelling of this process somewhat hard, especially 
outside the boundaries of a quasi-linear treatment and we decided 
here to exclude it from our calculations, though being aware of the 
potential implications of this assumption. 
3  ACCELERATION  A N D  TRA NSPORT  O F  C R  
P ROTONS  A N D  N U C L E I  
The transport of protons in the bubble excavated by the wind is 
described by the transport equation introduced and solved in Blasi & 
Morlino ( 2023 ), which reads: 

∂ 
∂ r 

[
˜ u r 2 N − r 2 D ∂ N 

∂ r 
]

= E ∂ N 
∂ E 

[
1 
3 d( ̃  u r 2 ) 

d r − r 2 b 
E 
]

+ N [1 
3 d( ̃  u r 2 ) 

d r − r 2 b ′ ] , (6) 
where N ( E, r)d E = 4 πp 2 f ( r, p)d p is the distribution function of 
non-thermal particles as a function of energy, f being the distribution 
function in phase space. For simplicity, below we focus on relativistic 
particles, so that E # pc. In equation ( 6 ) we omitted, for simplicity, 
the source term. The normalization is calculated a posteriori in 
terms of an efficiency of conversion of the ram pressure ρw v 2 w 
into pressure of non-thermal particles. We introduced the rate of 
energy losses b( E, r) = c ̇p , and its deri v ati ve with respect to energy 
b ′ ( E, r) = ∂ b( E, r) / ∂ E. For high-energy protons energy losses are 
dominated by inelastic pp scattering (see Blasi & Morlino 2023 ). 
The ef fecti v e v elocity felt by particles, ˜ u = u + ηv A , is the sum of 
the plasma speed u ( r) and the net speed of the waves responsible 
for the particle scattering expressed as η times the Alfv ́en speed 
v A . When the parameter η is chosen to be zero (equal number of 
wav es mo ving in both directions), the effect of scattering centres 
disappears. 

For nuclei, the equation is similar but the main channel responsible 
for particle evolution is due to spallation reactions, treated as 
catastrophic losses. Hence the transport equation for nuclei of type 
α can be written as: 

∂ 
∂ r 

[
˜ u r 2 N α − r 2 D ∂ N α

∂ r 
]

= E ∂ N α
∂ E 1 

3 d( ̃  u r 2 ) 
d r 

+ 1 
3 d( ̃  u r 2 ) 

d r N α − N α
τsp ,α + ∑ 

α′ >α

N α′ 
τsp ,α′ → α . (7) 

Here E denotes the energy per nucleon of the nucleus of type α. Since 
we are still focusing on relativistic particles we safely neglected 
energy losses of the nuclei and included only spallation, with a 
characteristic time τsp ,α . The time-scale τsp ,α′ → α relates the spallation 
of a heavier nucleus to a nucleus of type α. 

For a detailed prediction of the physical behaviour of nuclei in the 
environment of a star cluster, a full treatment of the nuclear cascade 
from any heavier nucleus to the nuclear specie α should be employed. 
Ho we ver here we are only interested in making a physical point: the 
spectrum of nuclei is made harder by the effect of spallation. In order 
to make this point we focus on a few simpler cases: (1) we assume 
that 4 He is injected at the shock (a reasonable assumption since 3 He 
is secondary in nature) and that it fragments to 3 He. We solve the 
transport equation, in its stationary form, for both species. We recall 
that the He spectrum that most experiments refer to is the total flux, to 
be interpreted as the sum of 3 He and 4 He. (2) We consider the cases 
of O and Fe nuclei that, to a good approximation, can be considered 

as pure primary nuclei and use this calculation to make a quantitative 
assessment of the role of spallation for nuclei heavier than He. 

In equation ( 7 ), the total cross-section for the spallation of a 
nucleus of mass number A has been taken as σA = 45 A 0 . 7 mb. Here, 
3 He has been considered as purely secondary product of spallation 
reactions of 4 He, although the branching ratio of this channel has 
been increased artificially to 0.75 to mimic the contribution of heavier 
nuclei that have not been included explicitly in the spallation chain. 
In other words σ ( 4 He → 3 He ) = 0 . 75 σ4 . 

We solve equation ( 6 ) using a mixed technique, numerical and 
iterative, as introduced and discussed in Blasi & Morlino ( 2023 ) 
for the case of protons. For a given ansatz on the solution at the 
shock, N 0 ( E) 2 , equation ( 6 ) is solved numerically upstream and 
downstream using a grid discretized in radius and energy. The two 
solutions are matched at r = R s so that N = N 0 . Such a solution is 
used to determine D ∂ N 

∂ r | 1 , 2 as functions of energy. At this point one 
can introduce 
D 1 , 2 ∂ N 

∂ r | 1 , 2 = D 1 , 2 ( E ) ̃  u 1 , 2 N 0 ( E ) , (8) 
so that equation ( 6 ) becomes: 
E d N 0 

d E = N 0 [−3 D 2 ( E) 
1 − R + 3 R 

1 − R ( D 1 ( E) − 1) − R + 2 
R − 1 

]
, (9) 

where we introduced the compression factor of velocities of the 
scattering centres at the TS, R = ˜ u 1 / ̃  u 2 . The solution of equation 
( 9 ) can now be written as 
N 0 ( E) = KE − R + 2 

R −1 
× exp {∫ E 

0 d E ′ 
E ′ 

[
− 3 D 2 

1 − R + 3 R 
1 − R ( D 1 − 1) ]} . (10) 

It is useful to notice that in the case of a plane-parallel shock, D 1 → 1 
and D 2 → 0, so that the solution reduces to the standard power 
la w N 0 ∝ E − R + 2 

R −1 . The e xponential term in equation ( 10 ) takes into 
account both the spherical symmetry and the effect of energy losses 
through D 1 and D 2 . The specific energy dependence of D 1 , 2 shapes 
the spectrum of accelerated particles as a result of proximity to 
the maximum energy and because of the spherical topology of the 
outflow. 

Equation ( 7 ) is solved in a similar way for primary nuclei. For 
secondary nuclei the situation is slightly more complicated: in such a 
case there is no injection term at the shock, while the production term 
is spread in space due to spallation. Because of this, secondary nuclei 
produced in the region upstream of the TS are advected toward the 
shock and are subject to some level of acceleration, an effect similar 
to that described for SNRs by Blasi ( 2009 ) for electron–positron 
secondary pairs, by Berezhko et al. ( 2003 ), Mertsch & Sarkar ( 2009 ) 
for secondary boron and by Blasi & Serpico ( 2009 ) for antiprotons. 
In order to correctly describe this effect it is useful to relate the 
deri v ati ve upstream of the shock to the production rate upstream. To 
do so, we integrate the transport equation from r = 0 to r = R s to 
obtain: 
D ∂ N α

∂ r 
∣∣∣∣
1 = ˜ u 1 N α, 0 + δuN α, 0 − R s ∫ 1 

0 d ξ ξ 2 N α
τsp ,α , (11) 

2 We initialize N 0 ( E) using a pure power law with the expected slope, but we 
checked that the result does not change by changing this initial guess. 
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spatial scattering is not very sensitive to the isotropy of motion of 
perturbations, stochastic acceleration is only efficient when there 
is roughly the same number of wav es mo ving in all directions. 
This makes the modelling of this process somewhat hard, especially 
outside the boundaries of a quasi-linear treatment and we decided 
here to exclude it from our calculations, though being aware of the 
potential implications of this assumption. 
3  ACCELERATION  A N D  T R A N SP O RT  O F  C R  
PROTONS  A N D  N U C L E I  
The transport of protons in the bubble excavated by the wind is 
described by the transport equation introduced and solved in Blasi & 
Morlino ( 2023 ), which reads: 

∂ 
∂ r 

[
˜ u r 2 N − r 2 D ∂ N 

∂ r 
]

= E ∂ N 
∂ E 

[
1 
3 d( ̃  u r 2 ) 

d r − r 2 b 
E 
]

+ N [1 
3 d( ̃  u r 2 ) 

d r − r 2 b ′ ] , (6) 
where N ( E, r)d E = 4 πp 2 f ( r, p)d p is the distribution function of 
non-thermal particles as a function of energy, f being the distribution 
function in phase space. For simplicity, below we focus on relativistic 
particles, so that E # pc. In equation ( 6 ) we omitted, for simplicity, 
the source term. The normalization is calculated a posteriori in 
terms of an efficiency of conversion of the ram pressure ρw v 2 w 
into pressure of non-thermal particles. We introduced the rate of 
energy losses b( E, r) = c ̇p , and its deri v ati ve with respect to energy 
b ′ ( E, r) = ∂ b( E, r) / ∂ E. For high-energy protons energy losses are 
dominated by inelastic pp scattering (see Blasi & Morlino 2023 ). 
The ef fecti v e v elocity felt by particles, ˜ u = u + ηv A , is the sum of 
the plasma speed u ( r) and the net speed of the waves responsible 
for the particle scattering expressed as η times the Alfv ́en speed 
v A . When the parameter η is chosen to be zero (equal number of 
wav es mo ving in both directions), the effect of scattering centres 
disappears. 

For nuclei, the equation is similar but the main channel responsible 
for particle evolution is due to spallation reactions, treated as 
catastrophic losses. Hence the transport equation for nuclei of type 
α can be written as: 

∂ 
∂ r 

[
˜ u r 2 N α − r 2 D ∂ N α

∂ r 
]

= E ∂ N α
∂ E 1 

3 d( ̃  u r 2 ) 
d r 

+ 1 
3 d( ̃  u r 2 ) 

d r N α − N α
τsp ,α + ∑ 

α′ >α

N α′ 
τsp ,α′ → α . (7) 

Here E denotes the energy per nucleon of the nucleus of type α. Since 
we are still focusing on relativistic particles we safely neglected 
energy losses of the nuclei and included only spallation, with a 
characteristic time τsp ,α . The time-scale τsp ,α′ → α relates the spallation 
of a heavier nucleus to a nucleus of type α. 

For a detailed prediction of the physical behaviour of nuclei in the 
environment of a star cluster, a full treatment of the nuclear cascade 
from any heavier nucleus to the nuclear specie α should be employed. 
Ho we ver here we are only interested in making a physical point: the 
spectrum of nuclei is made harder by the effect of spallation. In order 
to make this point we focus on a few simpler cases: (1) we assume 
that 4 He is injected at the shock (a reasonable assumption since 3 He 
is secondary in nature) and that it fragments to 3 He. We solve the 
transport equation, in its stationary form, for both species. We recall 
that the He spectrum that most experiments refer to is the total flux, to 
be interpreted as the sum of 3 He and 4 He. (2) We consider the cases 
of O and Fe nuclei that, to a good approximation, can be considered 

as pure primary nuclei and use this calculation to make a quantitative 
assessment of the role of spallation for nuclei heavier than He. 

In equation ( 7 ), the total cross-section for the spallation of a 
nucleus of mass number A has been taken as σA = 45 A 0 . 7 mb. Here, 
3 He has been considered as purely secondary product of spallation 
reactions of 4 He, although the branching ratio of this channel has 
been increased artificially to 0.75 to mimic the contribution of heavier 
nuclei that have not been included explicitly in the spallation chain. 
In other words σ ( 4 He → 3 He ) = 0 . 75 σ4 . 

We solve equation ( 6 ) using a mixed technique, numerical and 
iterative, as introduced and discussed in Blasi & Morlino ( 2023 ) 
for the case of protons. For a given ansatz on the solution at the 
shock, N 0 ( E) 2 , equation ( 6 ) is solved numerically upstream and 
downstream using a grid discretized in radius and energy. The two 
solutions are matched at r = R s so that N = N 0 . Such a solution is 
used to determine D ∂ N 

∂ r | 1 , 2 as functions of energy. At this point one 
can introduce 
D 1 , 2 ∂ N 

∂ r | 1 , 2 = D 1 , 2 ( E ) ̃  u 1 , 2 N 0 ( E ) , (8) 
so that equation ( 6 ) becomes: 
E d N 0 

d E = N 0 [−3 D 2 ( E) 
1 − R + 3 R 

1 − R ( D 1 ( E) − 1) − R + 2 
R − 1 

]
, (9) 

where we introduced the compression factor of velocities of the 
scattering centres at the TS, R = ˜ u 1 / ̃  u 2 . The solution of equation 
( 9 ) can now be written as 
N 0 ( E) = KE − R + 2 

R −1 
× exp {∫ E 

0 d E ′ 
E ′ 

[
− 3 D 2 

1 − R + 3 R 
1 − R ( D 1 − 1) ]} . (10) 

It is useful to notice that in the case of a plane-parallel shock, D 1 → 1 
and D 2 → 0, so that the solution reduces to the standard power 
la w N 0 ∝ E − R + 2 

R −1 . The e xponential term in equation ( 10 ) takes into 
account both the spherical symmetry and the effect of energy losses 
through D 1 and D 2 . The specific energy dependence of D 1 , 2 shapes 
the spectrum of accelerated particles as a result of proximity to 
the maximum energy and because of the spherical topology of the 
outflow. 

Equation ( 7 ) is solved in a similar way for primary nuclei. For 
secondary nuclei the situation is slightly more complicated: in such a 
case there is no injection term at the shock, while the production term 
is spread in space due to spallation. Because of this, secondary nuclei 
produced in the region upstream of the TS are advected toward the 
shock and are subject to some level of acceleration, an effect similar 
to that described for SNRs by Blasi ( 2009 ) for electron–positron 
secondary pairs, by Berezhko et al. ( 2003 ), Mertsch & Sarkar ( 2009 ) 
for secondary boron and by Blasi & Serpico ( 2009 ) for antiprotons. 
In order to correctly describe this effect it is useful to relate the 
deri v ati ve upstream of the shock to the production rate upstream. To 
do so, we integrate the transport equation from r = 0 to r = R s to 
obtain: 
D ∂ N α

∂ r 
∣∣∣∣
1 = ˜ u 1 N α, 0 + δuN α, 0 − R s ∫ 1 

0 d ξ ξ 2 N α
τsp ,α , (11) 

2 We initialize N 0 ( E) using a pure power law with the expected slope, but we 
checked that the result does not change by changing this initial guess. 
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spatial scattering is not very sensitive to the isotropy of motion of 
perturbations, stochastic acceleration is only efficient when there 
is roughly the same number of wav es mo ving in all directions. 
This makes the modelling of this process somewhat hard, especially 
outside the boundaries of a quasi-linear treatment and we decided 
here to exclude it from our calculations, though being aware of the 
potential implications of this assumption. 
3  ACCELERATION  A N D  TRANSPORT  O F  C R  
PROTONS  A N D  N U C L E I  
The transport of protons in the bubble excavated by the wind is 
described by the transport equation introduced and solved in Blasi & 
Morlino ( 2023 ), which reads: 

∂ 
∂ r 

[
˜ u r 2 N − r 2 D ∂ N 

∂ r 
]

= E ∂ N 
∂ E 

[
1 
3 d( ̃  u r 2 ) 

d r − r 2 b 
E 
]

+ N [1 
3 d( ̃  u r 2 ) 

d r − r 2 b ′ ] , (6) 
where N ( E, r)d E = 4 πp 2 f ( r, p)d p is the distribution function of 
non-thermal particles as a function of energy, f being the distribution 
function in phase space. For simplicity, below we focus on relativistic 
particles, so that E # pc. In equation ( 6 ) we omitted, for simplicity, 
the source term. The normalization is calculated a posteriori in 
terms of an efficiency of conversion of the ram pressure ρw v 2 w 
into pressure of non-thermal particles. We introduced the rate of 
energy losses b( E, r) = c ̇p , and its deri v ati ve with respect to energy 
b ′ ( E, r) = ∂ b( E, r) / ∂ E. For high-energy protons energy losses are 
dominated by inelastic pp scattering (see Blasi & Morlino 2023 ). 
The ef fecti v e v elocity felt by particles, ˜ u = u + ηv A , is the sum of 
the plasma speed u ( r) and the net speed of the waves responsible 
for the particle scattering expressed as η times the Alfv ́en speed 
v A . When the parameter η is chosen to be zero (equal number of 
wav es mo ving in both directions), the effect of scattering centres 
disappears. 

For nuclei, the equation is similar but the main channel responsible 
for particle evolution is due to spallation reactions, treated as 
catastrophic losses. Hence the transport equation for nuclei of type 
α can be written as: 

∂ 
∂ r 

[
˜ u r 2 N α − r 2 D ∂ N α

∂ r 
]

= E ∂ N α
∂ E 1 

3 d( ̃  u r 2 ) 
d r 

+ 1 
3 d( ̃  u r 2 ) 

d r N α − N α
τsp ,α + ∑ 

α′ >α

N α′ 
τsp ,α′ → α . (7) 

Here E denotes the energy per nucleon of the nucleus of type α. Since 
we are still focusing on relativistic particles we safely neglected 
energy losses of the nuclei and included only spallation, with a 
characteristic time τsp ,α . The time-scale τsp ,α′ → α relates the spallation 
of a heavier nucleus to a nucleus of type α. 

For a detailed prediction of the physical behaviour of nuclei in the 
environment of a star cluster, a full treatment of the nuclear cascade 
from any heavier nucleus to the nuclear specie α should be employed. 
Ho we ver here we are only interested in making a physical point: the 
spectrum of nuclei is made harder by the effect of spallation. In order 
to make this point we focus on a few simpler cases: (1) we assume 
that 4 He is injected at the shock (a reasonable assumption since 3 He 
is secondary in nature) and that it fragments to 3 He. We solve the 
transport equation, in its stationary form, for both species. We recall 
that the He spectrum that most experiments refer to is the total flux, to 
be interpreted as the sum of 3 He and 4 He. (2) We consider the cases 
of O and Fe nuclei that, to a good approximation, can be considered 

as pure primary nuclei and use this calculation to make a quantitative 
assessment of the role of spallation for nuclei heavier than He. 

In equation ( 7 ), the total cross-section for the spallation of a 
nucleus of mass number A has been taken as σA = 45 A 0 . 7 mb. Here, 
3 He has been considered as purely secondary product of spallation 
reactions of 4 He, although the branching ratio of this channel has 
been increased artificially to 0.75 to mimic the contribution of heavier 
nuclei that have not been included explicitly in the spallation chain. 
In other words σ ( 4 He → 3 He ) = 0 . 75 σ4 . 

We solve equation ( 6 ) using a mixed technique, numerical and 
iterative, as introduced and discussed in Blasi & Morlino ( 2023 ) 
for the case of protons. For a given ansatz on the solution at the 
shock, N 0 ( E) 2 , equation ( 6 ) is solved numerically upstream and 
downstream using a grid discretized in radius and energy. The two 
solutions are matched at r = R s so that N = N 0 . Such a solution is 
used to determine D ∂ N 

∂ r | 1 , 2 as functions of energy. At this point one 
can introduce 
D 1 , 2 ∂ N 

∂ r | 1 , 2 = D 1 , 2 ( E ) ̃  u 1 , 2 N 0 ( E ) , (8) 
so that equation ( 6 ) becomes: 
E d N 0 

d E = N 0 [−3 D 2 ( E) 
1 − R + 3 R 

1 − R ( D 1 ( E) − 1) − R + 2 
R − 1 

]
, (9) 

where we introduced the compression factor of velocities of the 
scattering centres at the TS, R = ˜ u 1 / ̃  u 2 . The solution of equation 
( 9 ) can now be written as 
N 0 ( E) = KE − R + 2 

R −1 
× exp {∫ E 

0 d E ′ 
E ′ 

[
− 3 D 2 

1 − R + 3 R 
1 − R ( D 1 − 1) ]} . (10) 

It is useful to notice that in the case of a plane-parallel shock, D 1 → 1 
and D 2 → 0, so that the solution reduces to the standard power 
la w N 0 ∝ E − R + 2 

R −1 . The e xponential term in equation ( 10 ) takes into 
account both the spherical symmetry and the effect of energy losses 
through D 1 and D 2 . The specific energy dependence of D 1 , 2 shapes 
the spectrum of accelerated particles as a result of proximity to 
the maximum energy and because of the spherical topology of the 
outflow. 

Equation ( 7 ) is solved in a similar way for primary nuclei. For 
secondary nuclei the situation is slightly more complicated: in such a 
case there is no injection term at the shock, while the production term 
is spread in space due to spallation. Because of this, secondary nuclei 
produced in the region upstream of the TS are advected toward the 
shock and are subject to some level of acceleration, an effect similar 
to that described for SNRs by Blasi ( 2009 ) for electron–positron 
secondary pairs, by Berezhko et al. ( 2003 ), Mertsch & Sarkar ( 2009 ) 
for secondary boron and by Blasi & Serpico ( 2009 ) for antiprotons. 
In order to correctly describe this effect it is useful to relate the 
deri v ati ve upstream of the shock to the production rate upstream. To 
do so, we integrate the transport equation from r = 0 to r = R s to 
obtain: 
D ∂ N α

∂ r 
∣∣∣∣
1 = ˜ u 1 N α, 0 + δuN α, 0 − R s ∫ 1 

0 d ξ ξ 2 N α
τsp ,α , (11) 

2 We initialize N 0 ( E) using a pure power law with the expected slope, but we 
checked that the result does not change by changing this initial guess. 
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where ξ ≡ r/R s and we introduced the quantity: 
δu = −2 

3 ˜ u 1 
N α, 0 

∫ 1 
0 d ξN αξ ( 1 − q α( E, ξ ) ) 

+ R s 
N α, 0 

∫ 1 
0 d ξ ξ 2 N α′ 

τsp ,α′ → α , (12) 
and q α( r, E) ≡ −d ln N α/ d ln E is the slope of the function N α at 
location r and energy E. 

Integrating the transport equation around the shock location we 
obtain: 
E d N α, 0 

d E = −s N α, 0 + 3 N α, 0 
r − 1 

[
D 2 − δu 

˜ u 2 
]

+ F ( E) , (13) 
where 
F ( E) = 3 R s 

˜ u 2 ( r − 1) 
∫ 1 

0 d ξ ξ 2 N α′ 
τsp ,α′ → α . (14) 

Here we used explicitly the compression factor r = ˜ u 1 / ̃  u 2 and the 
slope s = ( r + 2) / ( r − 1) that would be obtained for a plain parallel 
shock. The function F ( E) plays the role of a source function for 
nuclei of type α. The formal solution of equation ( 13 ) can be written 
in an implicit way as follows: 
N α, 0 ( E) = ∫ E 

0 d E ′ 
E ′ F ( E ′ ) ( E 

E ′ 
)−s 

× exp {∫ E 
E ′ d E ′ 

d E ′ 
[

3 
r − 1 

(
D 2 − δu 

˜ u 2 
)]}

. (15) 
The solution as written here is formally reminiscent of that found 
in problems of reacceleration. In fact, the energization of secondary 
nuclei produced upstream can be considered as a sort of reacceler- 
ation. The procedure for solving the o v erall problem of transport of 
secondary nuclei is basically identical to the one discussed abo v e 
for primary nuclei. For a given ansatz on N α, 0 one can solve for the 
spatial transport numerically and so e v aluate from the calculation the 
quantities D 2 , δu , and F ( E). This allows us to e v aluate an updated 
N α, 0 . A simple iterative technique leads to the solution. 
3.1 Limitations of a spherically symmetric approach 
It may be argued that a spherically symmetric approach adopted here 
may lose track of the fact that the actual target for CR interactions is 
in the form of dense clouds that fill a limited fraction of the volume of 
the bubble. In order to make a quantitative assessment of this effect, 
we estimate here the fraction of CRs that in a star cluster may be 
subject to the grammage contributed by the clouds. 

Since the wind density is typically very low, the average density n 
is mainly contributed by the clouds and we can write: 
4 π
3 R 3 b n m p = N cl M cl = N cl 4 π3 R 3 cl n cl m p , (16) 

where n cl and R cl are the typical density and radius of a cloud of 
mass M cl . If follows immediately that the number of clouds in the 
bubble is: 
N cl = n 

n cl 
(

R b 
R cl 

)3 
. (17) 

It is worth noticing that for fiducial values of the parameters, n = 
10 cm −3 , n cl = 500 cm −3 , R b = 100 pc, and R cl = 2 pc, one may 
expect N cl ≈ 2500, which implies a typical distance between two 
clumps of d ∼ 4 R cl . It is instructive to estimate the time necessary 
to travel through diffusion between two clumps, τc , compared with 

Figure 1. Time-scales for dif fusi ve escape from the bubble ( τdif ), advection 
( τadv ), acceleration ( τacc ), multiplied here by 100 to make it visible in the 
same plot, and spallation for He, C, and Fe nuclei. A reference value of 
n = 10 cm −3 for the mean gas density in the bubble has been adopted. These 
time-scales are compared with the age of the star cluster (dotted black line). 
We assumed Ṁ = 1 . 5 × 10 −4 M (/ yr, v w = 2800 km s −1 , external density 
of 20 cm −3 and ηB = 0 . 1. 

the two rele v ant time-scales, the advection and dif fusi ve time-scale: 
τc = d 2 

6 D( E) = 16 R 2 cl 
6 D( E) = 16 (R cl 

R b 
)2 

τdif ( E) 
τadv τadv , (18) 

where τadv and τdif are respectively the advection and diffusion time- 
scales in the bubble. These quantities can be read off Fig. 1 , together 
with other rele v ant time-scales discussed in the next section, for a 
star cluster with Ṁ = 1 . 5 × 10 −4 M ( yr −1 , v w = 2800 km s −1 , age 
of 3 Myr, a mean density in the bubble n = 10 cm −3 , external density 
of 20 cm −3 and ηB = 0 . 1. It may be easily seen that τc is much shorter 
than both the advection and diffusion times. This implies that whether 
the particles accelerated at the TS escape the bubble adv ectiv ely (low 
energies) or dif fusi v ely (high energies), the y are bound to cross many 
dense clumps, and the accumulated grammage really depends upon 
the time spent inside the clumps rather than in the low density part of 
the bubble. For instance, for a particle that escapes from the cavity 
through adv ection, the transv erse dif fusi ve motion in one advection 
time is 
∼
√ 

Dτadv = R b 
√ 

Dτadv 
R 2 b = R b √ 

τadv 
τdif , (19) 

which is a large fraction of the radius of the bubble. In fact the 
volume probed by the particles while advecting toward the edge 
of the bubble is ∼πR 3 b ( τadv /τdif ), which even at energies as low as 
10 GeV is of order ∼2 per cent of the entire volume, meaning that 
about 50 clumps are encountered before escape. When the particles 
escape dif fusi v ely, by definition the y probe the entire volume of the 
bubble and cross all the clumps in it. 

Let τesc be the escape time, defined as the minimum between the 
advection and diffusion time-scales. The grammage that the particles 
traverse can then be written as 
X( E) = n cl c m p τesc f , (20) 
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Figure 3. Spectrum of accelerated particles at the TS for ˜ u 2 = u 2 + ηv A, 2 
with η = 0 (solid lines) and η = 0.04 (dashed lines). An efficiency of CR 
acceleration ξCR = 0.01 has been used. The black curves refer to the nominal 
dif fusion coef ficient do wnstream, while the blue and red curves have been 
obtained by suppressing artificially D 2 by a factor 2 and 10, respectively. The 
low-energy slope of N 0 ( E ) for η = 0.04 (dashed lines) is 2.08. 
1 . 5 × 10 −4 M # yr −1 , age of 3 million yr, and density of the outside 
ISM 20 cm −3 . With these values of the parameters, the luminosity 
of the star cluster is L w = 3.8 × 10 38 erg s –1 . The TS is located at 
R s = 15 . 3 pc while the outer edge of the bubble is at 96 pc. While 
this set of parameters defines our benchmark model, in the following 
we will investigate the effect of changing these numbers within a 
reasonable range that may describe a more generic star cluster or 
account for uncertainties in the value of these parameters for the case 
of Cygnus OB2 (Menchiari et al. 2023 ). 

In Fig. 3 we show the spectrum of accelerated particles at the TS in 
our benchmark case, assuming that the scattering waves downstream 
of the TS are fully isotropic ( ̃  u 2 = u 2 , solid black line) or that 
alternatively there is a 4 per cent excess of waves moving away 
from the shock toward downstream ( ̃  u 2 = u 2 + 0 . 04 v A, 2 , dashed 
black line). The latter case is expected to lead to a steeper spectrum 
Bell ( 1978 ) (see also discussion in Morlino et al. 2021b ). These 
curves are obtained using the Kraichnan expressions for the diffusion 
coefficients described in Section 2 , with ηB = 0.1. The blue (red) 
curves for each of the two cases listed earlier show the spectra 
of accelerated particles in the case that the diffusion coefficient 
downstream is artificially reduced by a factor 2 (10) to mimic the 
excitation of MHD instabilities behind the shock front Giacalone & 
Jokipii ( 2007 ). 

Fig. 3 illustrates in a clear way how tricky is the definition of 
the maximum energy in the spherical geometry typical of a stellar 
cluster: although for the parameters that we have chosen here the 
maximum energy can be easily read off Fig. 2 to be of order ∼1 PeV, 
one can see that the spectrum of particles accelerated at the TS starts 
dropping appreciably at energy ! 100 TeV, while in the PeV region 
the spectrum is already rapidly dropping. As discussed by Morlino 
et al. ( 2021b ), this effect is due to the appearance of a sort of mean 
plasma speed upstream: for low energies, this effective speed is close 
to v w and the spectrum is the same that one would obtain for a plain 
shock. At high energies, when the diffusion length upstream is not 
negligible compared with the radius of the TS, the ef fecti ve speed 
becomes less than v w , which implies a smaller ef fecti ve compression 

Figure 4. Time-scales for dif fusi ve escape from the bubble ( τ dif ), advection 
( τ adv ), losses ( τ l ) for two values of the gas density in the cavity ( n = 10 
and n = 20 cm −3 ), and acceleration ( τ acc ), multiplied here by 100 to make it 
visible in the same plot. These time-scales are compared with the age of the 
star cluster (solid black line). 
factor and a steeper spectrum. This effect is more pronounced for 
weak energy dependence of the diffusion coefficient: for Kolmogorov 
scaling, one has a gradual steepening rather than a cutoff, that starts 
already in the TeV re gion. F or Bohm diffusion the spectrum would 
start cutting off at approximately the maximum energy. However, 
as discussed earlier, this case seems to be poorly justified at least 
for the parameters of Cygnus OB2. The case of Kraichnan scaling 
adopted here is somewhat intermediate between the Bohm and the 
Kolmogorov cases. 

The blue and red curves have been introduced to comment on 
the effect that decreasing the diffusion coefficient downstream with 
respect to the nominal value would have on the maximum momentum 
of accelerated particles. Reducing D 2 by a factor 2 does indeed 
lead to a slight increase in p max , as expected; ho we ver an additional 
reduction, to D 2 /10 does not lead to any appreciable change, except 
perhaps a small deviation in the shape of the cutoff. This is because 
for a too small value of the downstream diffusion coefficient, it is the 
upstream confinement that becomes more constraining in terms of 
maximum momentum. This can be easily appreciated by comparing 
the blue and red curves in Fig. 3 . 

So far we have not discussed the role of energy losses: this is 
because the time-scale for losses is much longer than the acceleration 
time, hence the spectrum at the shock is weakly affected by losses. 
Ho we ver this does not mean that losses are unimportant, in that 
they affect the spatial distribution and the spectrum of particles 
in the downstream region. This is illustrated in Fig. 4 , where we 
compare the diffusion time-scale in the region downstream of the 
shock, τdif ( E) = R 2 b /D 2 ( E), the time-scale of advection 
τadv = ∫ R b 

R s dr 
u ( r) = 1 

3 R b 
u 2 

(
R b 
R s 

)2 [ 
1 − (

R s 
R b 

)3 ] 
, (30) 

the time-scale for losses due to pion production, τ l = E / b ( E ) (for 
target density n = 10 cm −3 and n = 20 cm −3 ) and the age of the star 
cluster, τ age . The acceleration time, approximated here as 
τacc ( E) ≈ 3 

˜ u 1 − ˜ u 2 
[

D 1 
˜ u 1 + D 2 

˜ u 2 
]

, (31) 
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Figure 5. Spatial distribution of accelerated particles upstream and down- 
stream of the TS, for three energies (as indicated) and for density n = 
10 −3 cm −3 (dotted lines), n = 10 cm −3 (solid lines) and n = 20 cm −3 
(dashed lines). All curves refer to the simple case of absence of Alfv ́enic 
drift downstream, namely η = 0. 
is shown multiplied by a factor 100 in order to make it visible in 
the same plot. Clearly the maximum energy is not limited by energy 
losses in a star cluster resembling Cygnus OB2. 

While losses are not fast enough to shape the spectrum of 
accelerated particles at the shock location, they can modify the 
particle spectrum in the downstream region and, as a consequence, 
the spectrum of particles escaping the cavity as well. Notice that 
the observed gamma-ray emission mainly comes from the region 
downstream of the TS (see Section 5.2 ), hence it carries information 
on the effect of energy losses as well. 

In Fig. 5 we show the spatial distribution of particles with energy 
100 GeV , 1 TeV , and 100 TeV for a low target density in the bubble, 
n = 10 −3 cm −3 (where no appreciable losses are expected) and for 
the more realistic values of n = 10 cm −3 and n = 20 cm −3 (the gas 
is expected to be mainly in the form of clumped neutral Hydrogen, as 
discussed in Section 2.1 ). One can clearly identify the position of the 
TS at ∼15 pc from the center and the edge of the bubble at ∼96 pc. 
From Fig. 4 one can appreciate that the transport in the downstream 
region is mainly regulated by advection and losses for E ! 50 TeV, 
while diffusion plays the most important role at higher energies. 
Hence the effect of losses is most visible in the spatial distribution of 
lower energy particles in the downstream region (black and red lines 
in Fig. 5 ). At 100 TeV, losses do not lead to an appreciable change in 
the spatial distribution of the accelerated particles, although losses 
may become important at such energies if larger values of the density 
in the bubble are assumed. 

In the upstream region, as expected, there is no appreciable 
difference between the three situations, due to the fact that losses 
are too slow to operate in one advection time over a diffusion 
length of particles of given momentum. Downstream of the TS the 
difference between the case with weak or no losses, as previously 
investigated by Morlino et al. ( 2021b ), and the ones with losses 
(solid and dashed lines) is rather remarkable. Clearly this difference 
reflects on the volume integrated gamma-ray emission, especially in 
terms of the efficiency required for particles acceleration: the fact 
that pp energy losses are only weakly dependent on energy does 
not lead to specific spectral breaks, but rather to a global change of 

normalization, although small effects are present due to the relative 
importance of other effects (diffusion versus advection and losses). 

The difference in normalization at different energies in Fig. 5 
reflects the decreasing behaviour of the spectrum of accelerated 
particles as a function of energy, and eventually the appearance of 
the suppression due to approaching the maximum energy. Here we 
considered the case in which ˜ u 2 = u 2 , namely η = 0. If η > 0, the 
main change appears in the different normalization due to the steeper 
spectrum of accelerated particles. 
5.2 Gamma-ray emission from Cygnus OB2: spectra and 
morphology 
In this section, we discuss how the calculations of the spectrum 
and spatial distribution of accelerated particles affect the gamma- 
ray emission observed from the direction of the Cygnus cocoon, 
where observations have recently become available both in the GeV 
(Ackermann et al. 2011 ) and the TeV energy range Abeysekara et al. 
( 2021 ). 

Before trying to provide a physical description of the gamma- 
ray emission from the Cygnus OB2 association, it is important to 
discuss in some detail what the observations actually refer to: the 
HAWC telescope observed the central ∼2 ◦ region, corresponding to 
about ∼50 pc at a distance of 1.4 kpc appropriate for the Cygnus 
re gion. This re gion was divided in four annuli and for each of 
them the gamma-ray emission was measured. The total flux from 
the Cygnus region, including the region outside the central ∼2 ◦, was 
estimated assuming a Gaussian spatial distribution in two dimensions 
(distribution in the sky of an extended source). This simple assump- 
tion implies that the flux of gamma-rays that is actually observed 
(within the central region) accounts for about 39 per cent of the 
total emission, while 61 per cent of the total emission is contributed 
by the outside region, which is not directly observed. Clearly this 
assumption would be inconsequential if the spatial distribution of 
the gamma-ray emission were really Gaussian and if the spectrum 
of the gamma-ray emission were the same throughout the emitting 
region. Unfortunately, as we discuss further and as we illustrated 
earlier in terms of CR spatial distribution, both these assumptions 
are violated, which makes it difficult to extract information on the 
details of the acceleration and transport of particles in the cocoon. 
There are ho we ver se veral pieces of information that can be inferred 
from available data: firstly, we point out that the gamma-ray spectrum 
is available for each of the four annuli discussed earlier (Binita Hona, 
pri v ate communication), hence one could restrict the analysis to the 
comparison between our predictions and the data in the same annuli. 
This comparison is ho we ver possible only in the ∼1 − 100 TeV 
range, while at present the same information is not readily available 
in the GeV range ( Fermi -LAT). On the other hand, the total gamma- 
ray flux (with a similar assumption of Gaussian spatial distribution) 
has been published by the Fermi -LAT collaboration (Ackermann 
et al. 2011 ) while the flux per annuli (but not the spectrum) has been 
obtained by Aharonian et al. ( 2019 ). We also notice that Aharonian 
et al. ( 2019 ) provide an estimate of the total gas content inside the 
Cygnus region per annuli which translates to an average target density 
of 40 − 100 cm −3 . Such an estimate might be o v erestimated if the 
detected gas along the line of sight is not all concentrated in the 
Cygnus region, hence, in the calculations further we adopt a more 
conserv ati ve estimate of 10 − 20 cm −3 . 

The second avenue to gather information on the physics of this 
system is to limit our calculation to the same central region and artifi- 
cially adopt the same Gaussian assumption on the spatial distribution 
in order to estimate the total flux from the whole region, in a way 
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Figure 7. Volume integrated gamma-ray flux for Models 1, 2, and 3 described in the text and reported in Table 1 . The gas density in the bubble is n = 10 cm −3 
in the left panel and n = 20 cm −3 in the right panel. The CR acceleration efficiency has been changed to obtain a best fit to the flux in the lowest energy bin, 
and varies between 0.45 per cent and ∼ 1 per cent . 

Figure 8. Volume integrated gamma-ray flux for Model 4, with η = 
0.04 and n = 10 (solid) and 20 cm −3 (dashed), and for Model 3 with 
n = 10 cm −3 (dotted). The CR acceleration efficiency in the three cases 
is ξCR = 0 . 69 per cent , ξCR = 0 . 37 per cent and ξCR = 0 . 81 per cent , 
respectively. The preliminary LHAASO data point (Cao et al. 2021b ) has 
also been introduced. 

Finally, Model 3 (solid blue lines) better agrees with data also at 
higher energies, due to the fact that in this model the downstream 
dif fusion coef ficient w as reduced by a f actor 2 to mimic the possible 
magnetic field amplification due to hydrodynamical instabilities, 
thereby causing a somewhat higher maximum energy. For both cases 
of n = 10 cm −3 and n = 20 cm −3 this situation leads to a satisfactory 
description of the data, requiring a CR acceleration efficiency below 
1 per cent. This low efficiency justifies the decision of neglecting the 
non-linear dynamical feedback in particle acceleration at the TS. 

It is worth stressing that the total gamma-ray emission alone cannot 
constrain all the parameters of the model. In fact there is a de generac y 
between wind luminosity, acceleration efficiency and gas density. For 
instance, in Fig. 8 we show three possible sets of parameters for the 

wind and for CR transport that allow equally good and basically 
indistinguishable descriptions of the spatially integrated gamma-ray 
flux: two lines refer to the more energetic Model 4 (see Table 1 ) 
with target density n = 10 (solid blue line) and n = 20 cm −3 (dashed 
black line); the third case refers to Model 3, where the diffusion 
coef ficient do wnstream is reduced artificially by a factor 2 (dotted 
line). All these cases lead to somewhat larger maximum energy 
so that the gamma-ray spectrum extends to higher energies and, 
in addition to providing a good description of HAWC data, also 
explain the preliminary integral flux above 100 TeV recently quoted 
by LHAASO (Cao et al. 2021b ) (green data point at 100 TeV in 
Fig. 8 ). 

A note of caution is in order: the comparison between the spectra of 
gamma-ray emission claimed by different experiments is a delicate 
issue, in that slightly different size of the region of interest and 
the assumption of the spatial profile outside this region may lead 
to deformation in the spectrum and in turn to inferring incorrect 
values of physical parameters. This argument applies especially well 
to the LHAASO data point, for which only preliminary information 
is available at present. It is of crucial importance to await for more 
details of the gamma-ray spectrum and morphology at E γ ! 100 TeV 
to build a more physical picture of CR transport in the Cygnus region. 

Based on the information available at the present time, the gamma- 
ray emission at ∼100 TeV clearly indicates the presence of some 
accelerated particles in the PeV range. Ho we ver, this does not imply 
that the Cygnus OB-2 is necessarily a PeVatron from the point of view 
of explaining the CR spectrum, in that one can clearly see that the 
ef fecti ve maximum energy (defined as the energy where the power- 
la w e xtrapolation from lower energies in the CR spectrum drops by 
1/ e ) is well below PeV (see also Fig. 3 ). The experimental facilities 
that are being built are reaching such a high sensitivity that they 
are now able to measure the flux in the cutoff region down to very 
low fluxes. This result is in fact of the utmost importance, in that the 
shape of the cutoff carries information about the acceleration process. 
Ho we ver, detection of 100 TeV photons does not automatically imply 
that a source is able to produce enough protons at ∼PeV energy so 
as to explain the knee . 

An additional piece of information on the origin of the accelerated 
particles and of the non-thermal emission is carried by the morphol- 
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For low energy particles, the effect of energy losses 
is that of changing the spatial distribution of 
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Fitting to the Fermi+HAWC (2 degrees) data, for the nominal 
density n=10 cm-3, requires either loss rates and speed slightly 
larger than normally assumed, or additional production of 
turbulence downstream 
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Figure 10. Spectrum of gamma-ray emission observed by HAWC in four rings around the Cygnus association (shaded areas), compared with the results of our 
calculations (lines, labelled as in Fig. 8 ). Flux and slope of shaded areas are reported in Table 2 . 
Table 2. Best fit parameters for the flux and spectral slope obtained from 
HAWC data for each ring around the Cygnus OB2 cluster, shown in Fig. 10 . 
Ring Flux [cm −2 s −1 keV −1 ] ! 
1 0 . 5 + 1 . 9 −0 . 4 · 10 −22 −2.3 ± 0.5 
2 1 . 19 + 0 . 32 

−0 . 25 · 10 −22 −2.78 ± 0.12 
3 1 . 22 + 0 . 33 

−0 . 26 · 10 −22 −2.63 ± 0.15 
4 9 . 4 + 5 −3 . 2 · 10 −23 −2.37 ± 0.24 
particles’ return to the shock from the upstream region is guaranteed 
by the closed spherical geometry (see Fig. 1 ). In this sense this 
appears to be an ideal situation to push the particle energy to the 
limit imposed by their dif fusi ve confinement in the wind region 
(see also Morlino et al. 2021b ). Although this is indeed the case, 
we show that the spectrum of the accelerated particles does not 
retain its power-law shape up to the nominal value of p max as due 
to confinement constraints. While particles diffuse in the upstream 
(wind) re gion, the y do perceiv e the spherical geometry as an ef fecti ve 
reduced upstream velocity, which in turn means that the ef fecti ve 
compression factor gets smaller and the spectrum steeper while 

moving toward higher energies. For Kolmogorov and Kraichnan 
turbulence spectra this effect is gradual: it does not result in a cut-off 
but rather in a rolling steepening of the spectrum so that, although 
the nominal value of p max may exceed PeV, the actual spectrum 
starts becoming steeper much below p max . As discussed by Morlino 
et al. ( 2021a ), the only case in which the spectrum of accelerated 
particles develops an exponential cutoff at ∼p max is the one that 
refers to Bohm-like diffusion. Such an energy dependence would be 
physically justified if the turbulence were self-generated. Ho we ver, 
we have shown that for the typical parameters adopted for the 
Cygnus region, the growth of the non-resonant streaming instability 
is too slow to result in particle energies exceeding a few tens of 
TeV. 

In conclusion it seems challenging for star clusters with properties 
similar to the Cygnus region to behave as ef fecti ve PeVatrons, 
although we cannot exclude that star clusters requiring more extreme 
values of the parameters may satisfy the conditions needed for 
acceleration to the knee region. 

In this sense it is of the utmost importance to have at our 
disposal gamma-ray observations that extend to ! 100 TeV, because 
the y pro vide us with a measurement of the spectrum and spatial 
distribution of the accelerated particles in the cavity around a star 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/523/3/4015/7190644 by G
ran Sasso Science Institute user on 21 O

ctober 2024

The case of Cygnus OB2 4025 

MNRAS 523, 4015–4028 (2023) 

Figure 9. Gamma-ray flux abo v e 1 TeV in rings around the center of Cygnus 
OB2. The red dots with error bars are the results obtained by HAWC 
(Abeysekara et al. 2021 ). The coloured circles refer to the same cases of 
Fig. 8 : Model 4 with n = 10 cm −3 (blue dots) and n = 20 cm −3 (black dots); 
Model 3 with n = 10 cm −3 and the downstream diffusion coefficient reduced 
by a factor 2 (green dots). In all cases η = 0.04. 
ogy of the gamma-ray emission. The flux of gamma-rays observed 
by HAWC with energy > 1 TeV is shown in Fig. 9 in four bins with 
increasing distance from the center of the star cluster. These fluxes 
are obtained by integrating the gamma-ray flux in rings around the 
center of the cocoon (Abeysekara et al. 2021 ). The results of our 
calculations for the same cases illustrated in Fig. 8 (and reported in 
Table 1 ) are shown as thick dots. 

Within the HAWC error bars, the theoretical calculation of the 
morphology of the gamma-ray emission appears to be in excellent 
agreement with observations. In fact, in addition to the energy inte- 
grated information, one can also use some preliminary information 
on the spectrum in each of the four spatial bins: this information 
is shown in Fig. 10 , where the shaded areas represent the HAWC 
spectral fit in the different bins and the curves show our results in the 
same bins, for the same models discussed in Fig. 8 (the corresponding 
value of flux and photon spectral index are reported in Table 2 , from 
a pri v ate communication with Binita Hona). The agreement between 
the predicted and the observed gamma-ray spectra in the four bins 
seems evident. 

Since the fit to the observations is dominated by the lower energy 
bins ( ! 10 TeV) where the error bars are smaller, it is to be expected 
that some differences with models may appear at the higher energies. 
In this sense, the future LHAASO measurements of the gamma-ray 
emission from the Cygnus region will play a crucial role in assessing 
the role of stellar clusters as particle accelerators. 

We notice that a similar analysis of the morphology of the gamma- 
ray emission has also been performed by Aharonian et al. ( 2019 ) in 
the region of energies accessible to Fermi -LAT. The analysis suggests 
that the emission is peaked in the center of the system, rather at odds 
with the findings at high energies illustrated earlier. This point will 
be e xtensiv ely discussed in the upcoming article by Menchiari et al. 
( 2023 ). 

A final comment concerns the impact of the bubble size on the 
gamma-ray emission. We have seen in Section 2.1 that, under the 
reasonable assumption that the target gas is mainly concentrated in 
clumps with density n cl ≈ 10 3 cm −3 and size R cl ≈ 1 pc, cooling 
would reduce the bubble size by ≈ 30 per cent with respect to the 

adiabatic model adopted here. Using the parameters in Table 1 , the 
nominal size of the bubble excavated by the wind is ∼100 pc. Even 
a reduction of such size by ∼ 30 per cent would still result in a 
region that is larger than the ∼55 pc from which most gamma-ray 
emission are detected in Aharonian et al. ( 2019 ) and Abeysekara 
et al. ( 2021 ). Hence, since we expect the gamma-ray emission to 
be roughly ∝ R b , the small changes can be easily reabsorbed in a 
small change in either the target gas density or in the CR acceleration 
efficiency. Also the impact on p max is marginal and similar values 
can be obtained by slightly increasing the value of ηB or requiring 
a slightly larger diffusion suppression of the downstream diffusion 
coefficient. 

Very similar considerations can be made in terms of the impact 
on our results of the uncertainty in the cluster age, which ranges 
between 2 and 7 Myr. According to equation ( 2 ), R b ∝ t 3/5 , hence 
changing the age from 3 to 7 Myr produces a bubble size larger by 
∼ 60 per cent . Ho we ver, ages much older than 3 Myr could imply 
that some SN have exploded, changing the energy input in the bubble 
system. In such a case our model should be significantly revised to 
account for the SNR contribution (see e.g. Vieu et al. 2022 ). 
6  CONCLUSI ONS:  W H AT  D I D  W E  L E A R N ?  
Compact star clusters are interesting astrophysical sources for many 
reasons. Here, we investigated their ability to accelerate CRs at the 
TS resulting from the interaction of the collective stellar wind with 
the surrounding ISM. We also calculated the gamma-ray emission 
produced by the hadronic interactions of the same accelerated 
particles with the gas embedded in the cavity excavated by the 
wind and compared the results of our calculations with the recent 
observations of the Cygnus region carried out by Fermi -LAT and 
HAWC. 

In a recent article Morlino et al. ( 2021b ), we laid down the bases of 
the theory of particle acceleration at the TS, while in the present work 
we completed such an investigation with the introduction of energy 
losses, dominated by pp inelastic scattering. Such losses do not play 
a significant role in shaping the spectrum of accelerated particles 
at the shock, while they affect the spatial distribution of CRs in the 
bubble and the associated gamma-ray emission if the average density 
in the wind bubble is of the order of or larger than ∼ 10 cm −3 . 

In our calculation we did not account for the spatial distribution 
of the target gas in the bubble, retaining the simplest assumption 
of a constant average gas density . Alternatively , the presence of 
clumps might affect our conclusions to some extent: firstly, the role 
of losses may be more prominent in clumps, where the density is 
larger, while may be irrele v ant for CR propagating in the hot shocked 
wind. This might turn out to require somewhat larger CR acceleration 
efficiencies at the TS, depending on the filling factor of the clumps. 
Second, the presence of clumps may affect our considerations on the 
morphology of the gamma-ray emission. Both reasons for concern 
are certainly to be kept in mind for times in which the information 
about the spatial location of the clumps and their o v erdensity will, 
if any, become known through dedicated observations. At presence, 
this information is not available and gamma-ray observations do 
not show the level of details that would require more sophisticated 
modeling. Hence our simple assumption of spatially constant gas 
density in the bubble. 

One of the main reasons for being interested in star clusters 
is that the y hav e been proposed to be potential PeVatrons. It is 
very interesting that while at a supernova shock the most severe 
constraints to particle acceleration come from the confinement of 
particles upstream of the shock, at the TS of a star cluster the 
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Figure 2. Spectrum of 4 He and 3 He [as E 2 N ( E) in arbitrary units here] at different locations. From top left and clockwise, the panels show the cases r/R s = 0 . 5, 
r/R s = 1 (shock location), r/R s = 2 and r/R s = 3. 
downstream is dominated by diffusion and these particles suffer less 
fragmentation. 

The situation is illustrated in Fig. 2 , where different panels show 
the spectrum of 4 He and 3 He at different locations from r/R s = 0 . 5 
(upstream) to r/R s = 3 (downstream). The spectrum of 4 He accel- 
erated at the shock is shown in the panel labelled as r/R s = 1. We 
adopted typical parameters of a young massive SC: v w = 2800 km/s 
and Ṁ = 1 . 5 × 10 −4 M #/ yr, compatible with the values found 
by Menchiari et al. ( 2024 ). In addition, we assumed a Kraichnan 
spectrum of the turbulence with coherence scale L c = 1 pc. With 
such a choice, the spectrum of 4 He starts falling at an energy 
of ∼100 TeV/n, an effect that we discussed in detail in Morlino 
et al. ( 2021 ) and Blasi & Morlino ( 2023 ). At lower energies the 
spectrum has the standard shape ∝ E −2 , since we adopted η = 0 
in the definition of ˜ u . At the location of the TS, the only 3 He 
present in the stationary situation is represented by nuclei produced 
upstream as a result of spallation of 4 He and energized at the shock 
crossing. One should notice the peculiar extremely hard spectrum of 
3 He, typical of reacceleration of secondary particles (at least when 
the diffusion coefficient increases with energy, which is typically 
the case). 

For r/R s = 0 . 5 (upstream of the shock), only 4 He nuclei with a 
diffusion length comparable with or larger than ∼0 . 5 R s can reach 
such a location, hence the spectrum of 4 He is peaked at high energies. 
Since spallation conserves the energy per nucleon, the spectrum of 

3 He nuclei produced as spallation products is also peaked at similar 
values of the energy/nucleon. 

In the region downstream of the TS, two phenomena take place. 
On one hand 4 He produces more 3 He while advecting and diffusing 
further down toward the external part of the bubble. On the other 
hand 3 He nuclei produced downstream are also transported through 
advection and diffusion, and suffer additional spallation reactions. 
In fact, one can see that the normalization of the spectrum of 4 He 
slightly decreases while moving toward the edge of the bubble and 
the normalization of the spectrum of 3 He correspondingly increases. 

Moreo v er while nuclei approach the outer boundary, it becomes 
more likely for them to escape the bubble dif fusi vely. This combi- 
nation of processes shapes the spectrum of particles escaping the 
remnant, determined as −D ∂ N 

∂ r | r= R b , as well as the spectra of nuclei 
at each location downstream. From the panels of Fig. 2 referring 
to r/R s = 2 and 3, one can see that most of the production of 
3 He, especially at low energies, occurs in the downstream region. 
Eventually, the highest energy part disappears because these particles 
are the ones that most easily escape the bubble in a dif fusi ve way. 

The spectrum of 4 He and 3 He nuclei that leave the bubble is shown 
in Fig. 3 and compared with the spectrum of escaping protons, for 
three values of the mean gas density in the bubble, n = 5 cm −3 , n = 
10 cm −3 and n = 20 cm −3 . Since the e xperiments, we hav e currently 
at our disposal can only measure the total flux of He, especially at high 
energies, we also show the total He flux. We stress that the relative 
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 We assume that 3He is mainly produced as spallation 
reaction of 4He 

 3He produced upstream of the TS is advected back onto 
the shock and gets reaccelerated  

 Both 3He and 4He suffer spallation downstream of the 
termination shock 

 The spectrum of the escaping particles at the edge of 
the bubble is given as  

The role of spallation of He nuclei is that of changing 
the ratio H/He injected into the ISM
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Figure 3. Spectrum of escaping protons (purple solid line) compared with 
the escaping spectra of 4 He (red dashed line) and 3 He (dotted blue line) 
nuclei. The solid black line is the total He flux escaping the bubble. The top, 
middle, and bottom panels refer respectively to a mean density n = 5 cm −3 , 
n = 10 cm −3 , and n = 20 cm −3 . 
normalization of the proton and He spectra is arbitrary, in that it is 
determined by the efficiency of acceleration of the different species 
and by their relative abundances. On the other hand, the relative 
normalization of the spectra of 4 He and 3 He nuclei is only fixed by 

Figure 4. Ratio of the spectra of protons and helium nuclei ( 4 He + 3 He) 
escaping a star cluster for dif ferent v alues of the mean gas density in the 
bubble, n = 5 cm −3 (red), n = 10 cm −3 (blue) and n = 20 cm −3 (green). 
The ratio has been normalized to be the same in the different cases at rigidity 
10 GV. Data from AMS-02 (Aguilar et al. 2021 ) are also shown in the same 
plot for the sole purpose of allowing a qualitative comparison. 
the spallation cross-sections and by the processes responsible for 
their transport, namely advection and diffusion. Hence such ratio, 
for given parameters of the problem, can be predicted. 

The comparison between the solid purple and black lines gives 
an immediate feeling of the effect of hardening of the spectrum 
of nuclei compared with that of protons escaping the bubble into 
the ISM. In the most reasonable case of density n = 10 cm −3 , the 
effect of losses is to harden the total He spectrum with respect to 
that of protons by ∼0 . 07, that compares rather well with the effect 
required to explain the discrepant hardening in observations. For 
larger gas density, the effect becomes correspondingly larger and 
quickly becomes rather severe, as can be seen in the lower panel of 
Fig. 3 , with density n = 20 cm −3 . In the same way, a lower mean 
density in the bubble (top panel) leads to a less pronounced hardening 
of the He spectrum. Clearly all the considerations abo v e apply here 
to the energy range where the spectra are reasonably close to power 
laws. As discussed here and in Blasi & Morlino ( 2023 ), for typical 
values of parameters the effective maximum energy of accelerated 
particles is ! 100 TeV, hence deviations from the power-law trend 
are already visible in the tens of TeV energy range. This is also 
the range where the phenomenon of discrepant hardening has been 
unambiguously measured. 

Although, as discussed abo v e, the relativ e ratio of flux es of protons 
and helium is arbitrary here, it is instructive to show the energy 
dependence of the ratio p / He when the ratio is normalized to be the 
same at rigidity 10 GV. This quantity is shown in Fig. 4 for the same 
values of the mean gas density adopted earlier. In Fig. 4 , we also show 
the data of AMS-02 for the ratio (Aguilar et al. 2021 ) for the sole 
purpose of allowing the reader to achieve a qualitative comparison. 
One may notice that the ratio as computed here is in a qualitative 
good agreement with the observed trend, at least for mean density 
∼10 cm −3 . Ho we ver, it is important to keep in mind that the data refer 
to the propagated spectra while we only calculated the ratio of fluxes 
escaping an individual star cluster. Although propagation does not 
affect dramatically the ratio for rigidities " 10 GV, it remains true 
that the physical meaning of the two ratios is formally different. 
Moreo v er, the ratio shown here, as well as the fluxes of nuclear 
species, refer to an individual star cluster, with parameter values 
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middle, and bottom panels refer respectively to a mean density n = 5 cm −3 , 
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required to explain the discrepant hardening in observations. For 
larger gas density, the effect becomes correspondingly larger and 
quickly becomes rather severe, as can be seen in the lower panel of 
Fig. 3 , with density n = 20 cm −3 . In the same way, a lower mean 
density in the bubble (top panel) leads to a less pronounced hardening 
of the He spectrum. Clearly all the considerations abo v e apply here 
to the energy range where the spectra are reasonably close to power 
laws. As discussed here and in Blasi & Morlino ( 2023 ), for typical 
values of parameters the effective maximum energy of accelerated 
particles is ! 100 TeV, hence deviations from the power-law trend 
are already visible in the tens of TeV energy range. This is also 
the range where the phenomenon of discrepant hardening has been 
unambiguously measured. 

Although, as discussed abo v e, the relativ e ratio of flux es of protons 
and helium is arbitrary here, it is instructive to show the energy 
dependence of the ratio p / He when the ratio is normalized to be the 
same at rigidity 10 GV. This quantity is shown in Fig. 4 for the same 
values of the mean gas density adopted earlier. In Fig. 4 , we also show 
the data of AMS-02 for the ratio (Aguilar et al. 2021 ) for the sole 
purpose of allowing the reader to achieve a qualitative comparison. 
One may notice that the ratio as computed here is in a qualitative 
good agreement with the observed trend, at least for mean density 
∼10 cm −3 . Ho we ver, it is important to keep in mind that the data refer 
to the propagated spectra while we only calculated the ratio of fluxes 
escaping an individual star cluster. Although propagation does not 
affect dramatically the ratio for rigidities " 10 GV, it remains true 
that the physical meaning of the two ratios is formally different. 
Moreo v er, the ratio shown here, as well as the fluxes of nuclear 
species, refer to an individual star cluster, with parameter values 
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of nuclei compared with that of protons escaping the bubble into 
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effect of losses is to harden the total He spectrum with respect to 
that of protons by ∼0 . 07, that compares rather well with the effect 
required to explain the discrepant hardening in observations. For 
larger gas density, the effect becomes correspondingly larger and 
quickly becomes rather severe, as can be seen in the lower panel of 
Fig. 3 , with density n = 20 cm −3 . In the same way, a lower mean 
density in the bubble (top panel) leads to a less pronounced hardening 
of the He spectrum. Clearly all the considerations abo v e apply here 
to the energy range where the spectra are reasonably close to power 
laws. As discussed here and in Blasi & Morlino ( 2023 ), for typical 
values of parameters the effective maximum energy of accelerated 
particles is ! 100 TeV, hence deviations from the power-law trend 
are already visible in the tens of TeV energy range. This is also 
the range where the phenomenon of discrepant hardening has been 
unambiguously measured. 

Although, as discussed abo v e, the relativ e ratio of flux es of protons 
and helium is arbitrary here, it is instructive to show the energy 
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same at rigidity 10 GV. This quantity is shown in Fig. 4 for the same 
values of the mean gas density adopted earlier. In Fig. 4 , we also show 
the data of AMS-02 for the ratio (Aguilar et al. 2021 ) for the sole 
purpose of allowing the reader to achieve a qualitative comparison. 
One may notice that the ratio as computed here is in a qualitative 
good agreement with the observed trend, at least for mean density 
∼10 cm −3 . Ho we ver, it is important to keep in mind that the data refer 
to the propagated spectra while we only calculated the ratio of fluxes 
escaping an individual star cluster. Although propagation does not 
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 The spectrum of escaping (total) He is harder than that of protons 

 The ratio H/He is easily comparable with the observed one  

 This result is obtained with the same values of the gas density inferred in other 
ways and compatible with gamma ray observations 

 But the price to pay is to destroy nuclei heavier than He
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Figure 5. Spectra of protons (black line), 4 He + 3 He nuclei (blue line), 
oxygen (red line), and Fe (green line) escaping the bubble in the case of mean 
density inside the cavity n = 10 cm −3 . 
resembling those of the Cygnus region, while the fluxes and the ratio 
should be computed using a proper superposition of clusters weighed 
with a luminosity function, a much more ambitious goal than the one 
aimed at here. Finally, the spectra of p and He computed here are to 
be interpreted only as indicative since we are not properly accounting 
for the production of lighter elements from the spallation of heavier 
elements. 

Despite all these caveats, we believe that these results prove the 
potentially strong effect of the star clusters environment on the 
spectra of the escaping protons and helium nuclei and may stimulate 
further investigation of the problem. 
4.2 The case of heavier nuclei 
If the physical reason for the discrepant hardening between protons 
and He nuclei is the occurrence of spallation reactions in the 
b ubble exca vated by the collective stellar wind of the cluster, one 
should wonder what happens to heavier nuclei, characterized by 
larger spallation cross-sections. The corresponding time-scales for 
spallation become appreciably smaller than the advection time-scale 
and the age of the cluster, so that the escape of heavier nuclei from 
the bubble excavated by the star cluster can easily become an issue. 

As one can read off Fig. 1 , the time-scale for spallation of heavier 
elements (C, O, Fe) is so short that they are likely to be destroyed 
completely, e ven for relati vely lo w mean gas densities, n ! 10 cm −3 . 
This is illustrated more clearly in Fig. 5 , where we show the spectrum 
of protons, 4 He + 3 He nuclei, oxygen and Fe escaping the bubble 
in the case of mean density n = 10 cm −3 . One can appreciate again 
that while the spectrum of He is only slightly hardened, the effect 
on heavier nuclei is dramatic: for instance the spectrum of oxygen 
nuclei would be hardened by ∼0 . 5 with respect to H, which in 
practical terms would mean that the oxygen flux at energies ! 10 4 
GeV would be severely depleted. An even more severe effect can be 
seen in the spectrum of Fe nuclei, for which only very high-energy 
particles partially survive because they can escape dif fusi vely. In fact, 
Fig. 1 clearly shows that the spallation time for Fe nuclei is shorter 
than the diffusion time at all energies, though the two time-scales 
become comparable within a factor of two, at energies " 10 6 GeV/n, 
where ho we ver the spectra have already fallen down because of the 
maximum energy at the acceleration site. 

We stress once more that the physical information to be extracted 
from Figs 3 and 5 is in the shape of the spectra, not in their relative 
normalizations. The latter depend on the efficiency of acceleration 
of each species and their relative abundances and are clearly free 
parameters in our approach. If star clusters contribute to the flux of 
CRs in the Galaxy, then it appears clear that their main contribution 
is in the form of light elements, while heavier elements should 
be accelerated in more conventional environments, such as SNR 
shocks. On the other hand, since spallation seems to be so important, 
especially downstream of the TS, it seems urgent to carry out a 
calculation in which the full chain of spallation reactions, including 
all elements, is followed, so as to assess the contribution of such 
reactions to the flux of lighter elements and to the flux of intermediate 
secondary nuclei, such as B, Be, and Li, that are produced and 
destroyed ef fecti vely in the bubble. 

Here it is important to remind the reader once more that the mean 
density of gas adopted in the present calculation is to be interpreted 
as due to the presence of dense clouds inside the cavity. As discussed 
in Section 3.1 , for typical density of gas in a cloud n cl ∼ few hundred 
particles per cm 3 , the probability of CRs encountering a cloud is of 
order unity and the calculations abo v e pro vide a proper description 
of the transport of CRs in the bubble. The calculations eventually fail 
only in the unlikely situation in which the gas is concentrated in only 
a handful of very dense clouds in the bubble. In this case, the CRs 
that happen to cross a cloud would suffer severe spallation, while the 
ones that do not cross a cloud would escape the SC unaffected by 
spallation. For typical values of the parameters this is not the case. 
5  C O N C L U S I O N S  
While it has become clear that the bulk of the high-energy gamma 
radiation observed from selected clusters, for instance the Cygnus 
OB2 association, is of hadronic origin, the role of star clusters as 
sources of high-energy CRs remains matter of much debate: it is 
often believed that these sources may accelerate particles to the PeV 
energy region more easily than SNRs. This may be true, in that 
the TS behaves as an efficient accelerator even in the absence of 
strong CR induced instabilities (Blasi & Morlino 2023 ). Moreo v er 
the nominal maximum energy can be as high as several PeV, but as 
discussed in Morlino et al. ( 2021 ) and Blasi & Morlino ( 2023 ), the 
actual spectrum of accelerated particles seems to become steep at 
energies much smaller than this nominal E max . This has to do with 
the energy dependence of the diffusion coefficient, which is probably 
the least known aspect of the problem. On the other hand, the case 
of Bohm diffusion, required to a v oid or alleviate these problems, is 
expected only if CRs with a spectrum ∼E −2 drive powerful streaming 
instability, a situation that is hard to conceive in star clusters (see 
discussion in Blasi & Morlino 2023 ), or if turbulence in the wind 
region happens to be injected with roughly equal power on different 
scales o v er a broad range of scales. To be conserv ati ve, we make the 
statement that the role of star clusters (or at least of the bulk of star 
clusters) as PeVatrons remains to be assessed. 

On the other hand, the gamma-ray emission certainly shows 
that these are powerful CR accelerators. The gas column density 
measured in the direction of SCs in some specific cases, like Cyg 
OB2, also suggests that the density of local gas in the bubble is 
∼10 cm −3 (Aharonian et al. 2019 ; Menchiari et al. 2024 ). In this 
framework, it is reasonable to wonder about the fate of protons and 
nuclei accelerated at the TS. This was the focus of the present article, 
where particle acceleration of protons and nuclei, with energy losses 
and fragmentation taken into account, was investigated in detail. 
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Limitations of spherical symmetry
• It may be argued that the cold gas is not distributed homogeneously but in clouds 

— what is the effect on spallation? 

• The assumption of mean density works fine in terms of gamma ray emission  

• For typical values of parameters, the typical distance between two clumps is d~4 
Rcl 

• The time required to cover such a distance by diffusion is  

• This is shorter than both advection and diffusion time in the bubble —> particles 
cross numerous clumps while escaping 

• As long as the number of clumps traversed is >>1 the assumption of mean density 
makes sense and we can introduce a mean grammage in the bubble
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Figure 1. Schematic structure of a wind blown bubble excavated by a star 
cluster into the ISM: R s is the position of the TS, R b is the radius of the FS. 
downstream of the TS and the spectrum of particles escaping the 
ca vity exca v ated by the wind can be considerably af fected by such 
losses, at least for massive clusters. This effect shapes the spectrum of 
CR protons released into the ISM, at least for particles with energies 
such that their transport in the cavity is dominated by advection. We 
specialize these general predictions to the case of the Cygnus cocoon, 
for which detailed spectral and morphological information are now 
available. 

The article is organized as follows: in Section 2 we briefly 
summarize the general properties of the wind blown cavity and 
the role of cooling and clumpiness in the distribution of cold gas. 
In Section 3 , we discuss the main considerations that enter the 
calculation of the maximum energy of accelerated particles at the 
TS. In Section 4 , we describe the numerical solution of the transport 
equation of non-thermal particles in the cavity and the associated 
dif fusi ve particle acceleration at the TS. In Section 5 , we describe 
our results in terms of spectrum of accelerated particles and gamma- 
ray emission. We specialize our findings to the description of the 
spectrum and spatial morphology of the gamma-ray emission from 
the Cygnus cocoon. In Section 6 , we outline our conclusions. 
2  T H E  W I N D  BLOWN  BUBBLE  
In Fig. 1 we show a schematic view of the cavity blown by the 
collective wind of the stars located in the central re gion. We e xplicitly 
assume here to be dealing with a compact star cluster, namely a 
cluster in which the TS is located well outside the region where the 
stars are concentrated. 

Immediately outside the stellar cluster, the winds of the individual 
objects merge into a collective wind, with a velocity v w . The wind 
density is obtained from mass conservation: 
ρw ( r ) = Ṁ 

4 πr 2 v w , r > R c , (1) 
where R c is the radius of the core where the stars are concentrated, 
and Ṁ is the rate of mass-loss due to the collective wind. The impact 
of the supersonic wind with the ISM, assumed here to have a constant 
density ρ0 , produces a FS at position R b , while the shocked wind is 
bound by a TS, at a location R s . The shocked ISM and the shocked 
wind are separated by a contact discontinuity (not shown in Fig. 1 ), 

very close to the FS. The region between the contact discontinuity 
and the FS should contain dense cold interstellar gas, plowed away 
during the expansion of the cavity. Ho we ver, se veral instabilities are 
expected to spread this gas inside the cavity while the bubble is 
being blown. Hence clouds of dense molecular gas and regions of 
dense atomic gas are expected to fill, more or less homogeneously, 
the cavity. We will refer to the density of this gas as ρ (we will use 
the symbol n to indicate the number density in the bubble). One can 
easily check that for typical values of the parameters, the density 
contributed by the wind is completely negligible, especially in terms 
of gamma-ray production. 

Since the typical cooling time-scale of the shocked ISM is only 
∼10 4 yr, while the cooling time for the shocked wind is several 10 7 yr 
(Koo & McKee 1992a , b ), we can safely assume that the wind-blown 
b ubble ev olv es quasi-adiabatically. F ollowing Weav er et al. ( 1977 ) 
and Gupta et al. ( 2018 ), Morlino et al. ( 2021b ) provided some useful 
approximations for the position of the FS and the TS, that we use 
here. The position of the FS is at 
R b ( t) = 139 ρ−1 / 5 

10 Ṁ 1 / 5 −4 v 2 / 5 8 t 3 / 5 10 pc , (2) 
where ρ10 is the ISM density in the region around the star clus- 
ter in units of 10 protons cm –3 , v 8 = v w / (1000 km s −1 ), Ṁ −4 = 
Ṁ / (10 −4 M # yr −1 ) and t 10 is the dynamical time in units of 10 million 
yr. The wind luminosity is then L w = 1 

2 Ṁ v 2 w . The TS is located at 
R s = 24 . 3 Ṁ 3 / 10 

−4 v 1 / 10 
8 ρ

−3 / 10 
10 t 2 / 5 10 pc . (3) 

A more accurate calculation (Weaver et al. 1977 ) shows that the 
results earlier are accurate within ! 10 per cent . We stress again 
that the speed of the TS in the laboratory frame is very low, so that 
the entire bubble structure evolves slowly and can be considered 
as stationary to first approximation. It is worth stressing that the 
formation of a collective wind occurs only for compact clusters that 
have a typical cluster size R c $ R s (see, e.g. Gupta et al. 2020 ). 
2.1 Cooling effects and clumpiness 
In the model described earlier, the v olume a veraged density and 
temperature of the hot-shocked wind can be estimated as 
n b = Ṁ t age 

4 π/ 3 R 3 b = 3 . 6 × 10 −3 ρ3 / 5 
10 Ṁ 2 / 5 −4 v −6 / 5 

8 t −4 / 5 
10 cm −3 (4) 

and 
T b = P 

n b k B & 10 7 L 2 / 5 w, 38 n 3 / 5 10 n −1 
b, −2 t −4 / 5 

10 K , (5) 
respectively, where we introduced n b, −2 = n b / 10 −2 cm −3 . Alterna- 
tiv ely, cooling, that we ne glected in the estimates earlier, leads 
to a reduction of the temperature and therefore a smaller size 
of the bubble. Gupta et al. ( 2016 ) retained the effect of cooling 
and accounted for the radiation pressure from the stars, using 1D 
hydrodynamical simulations. In this way, they predict a bubble size 
that is smaller by ∼ 30 per cent at an age of a few Myr and a 
temperature roughly one order of magnitude smaller than the one 
estimated in equation ( 5 ). These effects appear rather mild in terms 
of the global structure of the bubble and the associated high-energy 
phenomenology. Ho we ver, the simulations of Gupta et al. ( 2016 ), 
being 1D in space, do not account for the possible presence of clumps 
in the bubble that may enhance the effect of cooling. 

The presence of dense clumps in the bubble is especially important 
for the problem discussed here, in that it may affect the strength and 
morphology of the gamma-ray signal. As we discuss in Section 5 , the 
present gamma-ray observations show that the average gas density 
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where ξ ≡ r/R s and we introduced the quantity: 
δu = −2 

3 ˜ u 1 
N α, 0 

∫ 1 
0 d ξN αξ ( 1 − q α( E, ξ ) ) 

+ R s 
N α, 0 

∫ 1 
0 d ξ ξ 2 N α′ 

τsp ,α′ → α , (12) 
and q α( r, E) ≡ −d ln N α/ d ln E is the slope of the function N α at 
location r and energy E. 

Integrating the transport equation around the shock location we 
obtain: 
E d N α, 0 

d E = −s N α, 0 + 3 N α, 0 
r − 1 

[
D 2 − δu 

˜ u 2 
]

+ F ( E) , (13) 
where 
F ( E) = 3 R s 

˜ u 2 ( r − 1) 
∫ 1 

0 d ξ ξ 2 N α′ 
τsp ,α′ → α . (14) 

Here we used explicitly the compression factor r = ˜ u 1 / ̃  u 2 and the 
slope s = ( r + 2) / ( r − 1) that would be obtained for a plain parallel 
shock. The function F ( E) plays the role of a source function for 
nuclei of type α. The formal solution of equation ( 13 ) can be written 
in an implicit way as follows: 
N α, 0 ( E) = ∫ E 

0 d E ′ 
E ′ F ( E ′ ) ( E 

E ′ 
)−s 

× exp {∫ E 
E ′ d E ′ 

d E ′ 
[

3 
r − 1 

(
D 2 − δu 

˜ u 2 
)]}

. (15) 
The solution as written here is formally reminiscent of that found 
in problems of reacceleration. In fact, the energization of secondary 
nuclei produced upstream can be considered as a sort of reacceler- 
ation. The procedure for solving the o v erall problem of transport of 
secondary nuclei is basically identical to the one discussed abo v e 
for primary nuclei. For a given ansatz on N α, 0 one can solve for the 
spatial transport numerically and so e v aluate from the calculation the 
quantities D 2 , δu , and F ( E). This allows us to e v aluate an updated 
N α, 0 . A simple iterative technique leads to the solution. 
3.1 Limitations of a spherically symmetric approach 
It may be argued that a spherically symmetric approach adopted here 
may lose track of the fact that the actual target for CR interactions is 
in the form of dense clouds that fill a limited fraction of the volume of 
the bubble. In order to make a quantitative assessment of this effect, 
we estimate here the fraction of CRs that in a star cluster may be 
subject to the grammage contributed by the clouds. 

Since the wind density is typically very low, the average density n 
is mainly contributed by the clouds and we can write: 
4 π
3 R 3 b n m p = N cl M cl = N cl 4 π3 R 3 cl n cl m p , (16) 

where n cl and R cl are the typical density and radius of a cloud of 
mass M cl . If follows immediately that the number of clouds in the 
bubble is: 
N cl = n 

n cl 
(

R b 
R cl 

)3 
. (17) 

It is worth noticing that for fiducial values of the parameters, n = 
10 cm −3 , n cl = 500 cm −3 , R b = 100 pc, and R cl = 2 pc, one may 
expect N cl ≈ 2500, which implies a typical distance between two 
clumps of d ∼ 4 R cl . It is instructive to estimate the time necessary 
to travel through diffusion between two clumps, τc , compared with 

Figure 1. Time-scales for dif fusi ve escape from the bubble ( τdif ), advection 
( τadv ), acceleration ( τacc ), multiplied here by 100 to make it visible in the 
same plot, and spallation for He, C, and Fe nuclei. A reference value of 
n = 10 cm −3 for the mean gas density in the bubble has been adopted. These 
time-scales are compared with the age of the star cluster (dotted black line). 
We assumed Ṁ = 1 . 5 × 10 −4 M (/ yr, v w = 2800 km s −1 , external density 
of 20 cm −3 and ηB = 0 . 1. 

the two rele v ant time-scales, the advection and dif fusi ve time-scale: 
τc = d 2 

6 D( E) = 16 R 2 cl 
6 D( E) = 16 (R cl 

R b 
)2 

τdif ( E) 
τadv τadv , (18) 

where τadv and τdif are respectively the advection and diffusion time- 
scales in the bubble. These quantities can be read off Fig. 1 , together 
with other rele v ant time-scales discussed in the next section, for a 
star cluster with Ṁ = 1 . 5 × 10 −4 M ( yr −1 , v w = 2800 km s −1 , age 
of 3 Myr, a mean density in the bubble n = 10 cm −3 , external density 
of 20 cm −3 and ηB = 0 . 1. It may be easily seen that τc is much shorter 
than both the advection and diffusion times. This implies that whether 
the particles accelerated at the TS escape the bubble adv ectiv ely (low 
energies) or dif fusi v ely (high energies), the y are bound to cross many 
dense clumps, and the accumulated grammage really depends upon 
the time spent inside the clumps rather than in the low density part of 
the bubble. For instance, for a particle that escapes from the cavity 
through adv ection, the transv erse dif fusi ve motion in one advection 
time is 
∼
√ 

Dτadv = R b 
√ 

Dτadv 
R 2 b = R b √ 

τadv 
τdif , (19) 

which is a large fraction of the radius of the bubble. In fact the 
volume probed by the particles while advecting toward the edge 
of the bubble is ∼πR 3 b ( τadv /τdif ), which even at energies as low as 
10 GeV is of order ∼2 per cent of the entire volume, meaning that 
about 50 clumps are encountered before escape. When the particles 
escape dif fusi v ely, by definition the y probe the entire volume of the 
bubble and cross all the clumps in it. 

Let τesc be the escape time, defined as the minimum between the 
advection and diffusion time-scales. The grammage that the particles 
traverse can then be written as 
X( E) = n cl c m p τesc f , (20) 
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where ξ ≡ r/R s and we introduced the quantity: 
δu = −2 

3 ˜ u 1 
N α, 0 

∫ 1 
0 d ξN αξ ( 1 − q α( E, ξ ) ) 

+ R s 
N α, 0 

∫ 1 
0 d ξ ξ 2 N α′ 

τsp ,α′ → α , (12) 
and q α( r, E) ≡ −d ln N α/ d ln E is the slope of the function N α at 
location r and energy E. 

Integrating the transport equation around the shock location we 
obtain: 
E d N α, 0 

d E = −s N α, 0 + 3 N α, 0 
r − 1 

[
D 2 − δu 

˜ u 2 
]

+ F ( E) , (13) 
where 
F ( E) = 3 R s 

˜ u 2 ( r − 1) 
∫ 1 

0 d ξ ξ 2 N α′ 
τsp ,α′ → α . (14) 

Here we used explicitly the compression factor r = ˜ u 1 / ̃  u 2 and the 
slope s = ( r + 2) / ( r − 1) that would be obtained for a plain parallel 
shock. The function F ( E) plays the role of a source function for 
nuclei of type α. The formal solution of equation ( 13 ) can be written 
in an implicit way as follows: 
N α, 0 ( E) = ∫ E 

0 d E ′ 
E ′ F ( E ′ ) ( E 

E ′ 
)−s 

× exp {∫ E 
E ′ d E ′ 

d E ′ 
[

3 
r − 1 

(
D 2 − δu 

˜ u 2 
)]}

. (15) 
The solution as written here is formally reminiscent of that found 
in problems of reacceleration. In fact, the energization of secondary 
nuclei produced upstream can be considered as a sort of reacceler- 
ation. The procedure for solving the o v erall problem of transport of 
secondary nuclei is basically identical to the one discussed abo v e 
for primary nuclei. For a given ansatz on N α, 0 one can solve for the 
spatial transport numerically and so e v aluate from the calculation the 
quantities D 2 , δu , and F ( E). This allows us to e v aluate an updated 
N α, 0 . A simple iterative technique leads to the solution. 
3.1 Limitations of a spherically symmetric approach 
It may be argued that a spherically symmetric approach adopted here 
may lose track of the fact that the actual target for CR interactions is 
in the form of dense clouds that fill a limited fraction of the volume of 
the bubble. In order to make a quantitative assessment of this effect, 
we estimate here the fraction of CRs that in a star cluster may be 
subject to the grammage contributed by the clouds. 

Since the wind density is typically very low, the average density n 
is mainly contributed by the clouds and we can write: 
4 π
3 R 3 b n m p = N cl M cl = N cl 4 π3 R 3 cl n cl m p , (16) 

where n cl and R cl are the typical density and radius of a cloud of 
mass M cl . If follows immediately that the number of clouds in the 
bubble is: 
N cl = n 

n cl 
(

R b 
R cl 

)3 
. (17) 

It is worth noticing that for fiducial values of the parameters, n = 
10 cm −3 , n cl = 500 cm −3 , R b = 100 pc, and R cl = 2 pc, one may 
expect N cl ≈ 2500, which implies a typical distance between two 
clumps of d ∼ 4 R cl . It is instructive to estimate the time necessary 
to travel through diffusion between two clumps, τc , compared with 

Figure 1. Time-scales for dif fusi ve escape from the bubble ( τdif ), advection 
( τadv ), acceleration ( τacc ), multiplied here by 100 to make it visible in the 
same plot, and spallation for He, C, and Fe nuclei. A reference value of 
n = 10 cm −3 for the mean gas density in the bubble has been adopted. These 
time-scales are compared with the age of the star cluster (dotted black line). 
We assumed Ṁ = 1 . 5 × 10 −4 M (/ yr, v w = 2800 km s −1 , external density 
of 20 cm −3 and ηB = 0 . 1. 

the two rele v ant time-scales, the advection and dif fusi ve time-scale: 
τc = d 2 

6 D( E) = 16 R 2 cl 
6 D( E) = 16 (R cl 

R b 
)2 

τdif ( E) 
τadv τadv , (18) 

where τadv and τdif are respectively the advection and diffusion time- 
scales in the bubble. These quantities can be read off Fig. 1 , together 
with other rele v ant time-scales discussed in the next section, for a 
star cluster with Ṁ = 1 . 5 × 10 −4 M ( yr −1 , v w = 2800 km s −1 , age 
of 3 Myr, a mean density in the bubble n = 10 cm −3 , external density 
of 20 cm −3 and ηB = 0 . 1. It may be easily seen that τc is much shorter 
than both the advection and diffusion times. This implies that whether 
the particles accelerated at the TS escape the bubble adv ectiv ely (low 
energies) or dif fusi v ely (high energies), the y are bound to cross many 
dense clumps, and the accumulated grammage really depends upon 
the time spent inside the clumps rather than in the low density part of 
the bubble. For instance, for a particle that escapes from the cavity 
through adv ection, the transv erse dif fusi ve motion in one advection 
time is 
∼
√ 

Dτadv = R b 
√ 

Dτadv 
R 2 b = R b √ 

τadv 
τdif , (19) 

which is a large fraction of the radius of the bubble. In fact the 
volume probed by the particles while advecting toward the edge 
of the bubble is ∼πR 3 b ( τadv /τdif ), which even at energies as low as 
10 GeV is of order ∼2 per cent of the entire volume, meaning that 
about 50 clumps are encountered before escape. When the particles 
escape dif fusi v ely, by definition the y probe the entire volume of the 
bubble and cross all the clumps in it. 

Let τesc be the escape time, defined as the minimum between the 
advection and diffusion time-scales. The grammage that the particles 
traverse can then be written as 
X( E) = n cl c m p τesc f , (20) 
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where ξ ≡ r/R s and we introduced the quantity: 
δu = −2 

3 ˜ u 1 
N α, 0 

∫ 1 
0 d ξN αξ ( 1 − q α( E, ξ ) ) 

+ R s 
N α, 0 

∫ 1 
0 d ξ ξ 2 N α′ 

τsp ,α′ → α , (12) 
and q α( r, E) ≡ −d ln N α/ d ln E is the slope of the function N α at 
location r and energy E. 

Integrating the transport equation around the shock location we 
obtain: 
E d N α, 0 

d E = −s N α, 0 + 3 N α, 0 
r − 1 

[
D 2 − δu 

˜ u 2 
]

+ F ( E) , (13) 
where 
F ( E) = 3 R s 

˜ u 2 ( r − 1) 
∫ 1 

0 d ξ ξ 2 N α′ 
τsp ,α′ → α . (14) 

Here we used explicitly the compression factor r = ˜ u 1 / ̃  u 2 and the 
slope s = ( r + 2) / ( r − 1) that would be obtained for a plain parallel 
shock. The function F ( E) plays the role of a source function for 
nuclei of type α. The formal solution of equation ( 13 ) can be written 
in an implicit way as follows: 
N α, 0 ( E) = ∫ E 

0 d E ′ 
E ′ F ( E ′ ) ( E 

E ′ 
)−s 

× exp {∫ E 
E ′ d E ′ 

d E ′ 
[

3 
r − 1 

(
D 2 − δu 

˜ u 2 
)]}

. (15) 
The solution as written here is formally reminiscent of that found 
in problems of reacceleration. In fact, the energization of secondary 
nuclei produced upstream can be considered as a sort of reacceler- 
ation. The procedure for solving the o v erall problem of transport of 
secondary nuclei is basically identical to the one discussed abo v e 
for primary nuclei. For a given ansatz on N α, 0 one can solve for the 
spatial transport numerically and so e v aluate from the calculation the 
quantities D 2 , δu , and F ( E). This allows us to e v aluate an updated 
N α, 0 . A simple iterative technique leads to the solution. 
3.1 Limitations of a spherically symmetric approach 
It may be argued that a spherically symmetric approach adopted here 
may lose track of the fact that the actual target for CR interactions is 
in the form of dense clouds that fill a limited fraction of the volume of 
the bubble. In order to make a quantitative assessment of this effect, 
we estimate here the fraction of CRs that in a star cluster may be 
subject to the grammage contributed by the clouds. 

Since the wind density is typically very low, the average density n 
is mainly contributed by the clouds and we can write: 
4 π
3 R 3 b n m p = N cl M cl = N cl 4 π3 R 3 cl n cl m p , (16) 

where n cl and R cl are the typical density and radius of a cloud of 
mass M cl . If follows immediately that the number of clouds in the 
bubble is: 
N cl = n 

n cl 
(

R b 
R cl 

)3 
. (17) 

It is worth noticing that for fiducial values of the parameters, n = 
10 cm −3 , n cl = 500 cm −3 , R b = 100 pc, and R cl = 2 pc, one may 
expect N cl ≈ 2500, which implies a typical distance between two 
clumps of d ∼ 4 R cl . It is instructive to estimate the time necessary 
to travel through diffusion between two clumps, τc , compared with 

Figure 1. Time-scales for dif fusi ve escape from the bubble ( τdif ), advection 
( τadv ), acceleration ( τacc ), multiplied here by 100 to make it visible in the 
same plot, and spallation for He, C, and Fe nuclei. A reference value of 
n = 10 cm −3 for the mean gas density in the bubble has been adopted. These 
time-scales are compared with the age of the star cluster (dotted black line). 
We assumed Ṁ = 1 . 5 × 10 −4 M (/ yr, v w = 2800 km s −1 , external density 
of 20 cm −3 and ηB = 0 . 1. 

the two rele v ant time-scales, the advection and dif fusi ve time-scale: 
τc = d 2 

6 D( E) = 16 R 2 cl 
6 D( E) = 16 (R cl 

R b 
)2 

τdif ( E) 
τadv τadv , (18) 

where τadv and τdif are respectively the advection and diffusion time- 
scales in the bubble. These quantities can be read off Fig. 1 , together 
with other rele v ant time-scales discussed in the next section, for a 
star cluster with Ṁ = 1 . 5 × 10 −4 M ( yr −1 , v w = 2800 km s −1 , age 
of 3 Myr, a mean density in the bubble n = 10 cm −3 , external density 
of 20 cm −3 and ηB = 0 . 1. It may be easily seen that τc is much shorter 
than both the advection and diffusion times. This implies that whether 
the particles accelerated at the TS escape the bubble adv ectiv ely (low 
energies) or dif fusi v ely (high energies), the y are bound to cross many 
dense clumps, and the accumulated grammage really depends upon 
the time spent inside the clumps rather than in the low density part of 
the bubble. For instance, for a particle that escapes from the cavity 
through adv ection, the transv erse dif fusi ve motion in one advection 
time is 
∼
√ 

Dτadv = R b 
√ 

Dτadv 
R 2 b = R b √ 

τadv 
τdif , (19) 

which is a large fraction of the radius of the bubble. In fact the 
volume probed by the particles while advecting toward the edge 
of the bubble is ∼πR 3 b ( τadv /τdif ), which even at energies as low as 
10 GeV is of order ∼2 per cent of the entire volume, meaning that 
about 50 clumps are encountered before escape. When the particles 
escape dif fusi v ely, by definition the y probe the entire volume of the 
bubble and cross all the clumps in it. 

Let τesc be the escape time, defined as the minimum between the 
advection and diffusion time-scales. The grammage that the particles 
traverse can then be written as 
X( E) = n cl c m p τesc f , (20) 
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where f is the fraction of time spent in the clumps. Here, we assume 
this fraction to be equal to the volume filling factor of clumps 3 : 
f = N cl V cl V V b 

V = N cl (R cl 
R b 

)3 
= n 

n cl , (21) 
where V is the volume accessible to particles during the escape 
time (when escape is dominated by advection, V < V b ), V b = 4 

3 πR 3 b 
is the total bubble volume and V cl = 4 

3 πR 3 c is the volume of an 
individual clump. In the last part of equation ( 21 ) we used equation 
( 17 ). Replacing this expression in the grammage we find that 
X( E) = n c m p τesc , (22) 
which shows that the introduction of the mean density in the bubble 
correctly describes the fact that there are concentrated clumps of 
dense material in the same region. This could be expected since, as 
discussed abo v e, at all energies the number of clumps traversed by 
the particles is !1, both in the advection-dominated and diffusion- 
dominated regimes. We conclude that the calculations discussed here, 
adopting a spherically symmetric geometry and a mean density inside 
the bubble, properly describe the effect of spallation of nuclei of the 
spectrum of particles, as long as N cl ! 1. 

If only a few dense clouds of cold gas are present inside the bubble, 
it is possible that some of the particles escape with no interactions 
with clouds, while the ones that happen to cross a clump may suffer 
severe spallation. This situation is not contemplated here. 

The estimates illustrated abo v e are physically justified when 
particles spend a short time inside individual clumps compared with 
the total escape time from downstream, which requires the transport 
in individual clumps to correspond to a dif fusion coef ficient equal to 
or larger than the one outside the clumps. In particular the estimate 
is justified in the case of free streaming inside clumps, which may 
be the case when ef fecti ve damping of small scale turbulence inside 
clumps leads to a suppression of scattering. 
4  RES ULTS  
Here we illustrate our results for the cases introduced abo v e. We 
stress that the purpose of this section is only to show the physical 
effect of accounting for nuclear spallation in the bubble, while a more 
quantitative analysis would require to introduce the whole chain of 
spallation reactions from heavy to lighter nuclei and to consider 
source terms for all primary nuclei, depending on the efficiency of 
particle injection at the TS. These efficiencies would require to be 
fitted to the observations at the Earth, after propagation of the CR 
spectra escaping star clusters on Galactic scales. 

The time-scale for spallation of He, C, and Fe nuclei in a typical 
bubble resulting from the interaction of the star cluster with the 
surrounding ISM is shown in Fig. 1 , together with the diffusion, 
advection and acceleration time-scales (the latter only for protons) 
and the age of the cluster, assumed here to be 3 million years. The 
gas density in the bubble adopted here as a benchmark value, as 
due to dense clouds, is n = 10 cm −3 . Fig. 1 illustrates the situation 
very clearly: first, particle acceleration is very fast compared to the 
typical dynamic scale of the cluster, as one can see by comparing 
advection and diffusion time-scales with the acceleration time, 
3 This assumption can be shown to be rigorously valid for a 1D geometry under 
the condition that D cl ! D b R cl /R b , where D b is the dif fusion coef ficient in 
the bubble. 

estimated here as 
τacc ( E ) = 3 

u 1 − u 2 
[

D 1 ( E ) 
u 1 + D 2 ( E ) 

u 2 
]

. (23) 
On the other hand, the equality of the diffusion length downstream 
to the size of the TS is the criterion that defines the maximum energy 
reached by the particles (Morlino et al. 2021 ). 

Spallation reactions occur faster than advection for elements 
heavier than He. For He, spallation and advection are competing 
processes, although diffusion eventually takes over spallation reac- 
tions for energies larger than ∼5 TeV/n. For elements heavier than 
He the role of spallation becomes correspondingly more important 
and represents the main factor in the evolution of the density of these 
CR elements in the downstream region. 

These processes all concur to shape the spectrum of CR species 
in the bubble and eventually the spectrum of particles escaping the 
bubble itself, a quantity that is especially important since it plays the 
role of injection term of nuclei in the description of CR transport in 
the Galaxy. Below we illustrate our results for He nuclei, with special 
emphasis on the role of 3 He, and some heavier nuclei (O and Fe). 
4.1 The case of helium nuclei 
While measurements of the spectrum of helium nuclei at high 
energies refer to the sum of fluxes of 3 He and 4 He, from the point 
of view of the physical origin of these elements, the former is 
basically all secondary product of spallation, while the latter is mainly 
a primary nucleus, weakly affected by the spallation of heavier 
elements. In the following, we shall make the simple assumption 
that the spallation of 4 He mainly leads to production of 3 He and that 
the contribution to 3 He from heavier elements can be mimicked by 
enhancing by hand the cross-section of production from 4 He by a 
factor ∼2 . 5 (Coste et al. 2012 ; see also Section 3 ). This assumption 
has its limitations since we know that in the Galaxy part of 3 He comes 
from the fragmentation of C, O, and heavier elements. Ho we ver, as 
will be clear in Section 4.2 , spallation in the environment of a star 
cluster destroys most of the heavy CR components, hence these 
limitations are less severe than they would be in other contexts, such 
as the propagation in the Galaxy. On the other hand, it is possible that 
severe spallation on heavy elements may contribute to the amount of 
He (as well as, in principle, protons). 

With these assumptions, we can estimate the spectra of 3 He and 
4 He produced in a star cluster and the spectra at escape, to be 
considered as ef fecti ve source spectra. We also compare the escape 
spectrum of 3 He + 4 He with that of protons. 

Upstream of the TS, 4 He nuclei accelerated at the shock can diffuse 
a distance of order D 1 / ̃  u 1 away, and this is also the region where the 
production of secondary 3 He nuclei can take place. Since high-energy 
particles can diffuse further away from the shock, more high-energy 
3 He is also produced, namely the injected spectrum of secondary 
3 He nuclei that reach the shock from upstream is harder than the 
spectrum of the parent 4 He nuclei. The 3 He nuclei produced upstream 
are automatically injected as non-thermal particles and get energized 
through dif fusi ve shock acceleration, an ef fect reminiscent of what is 
expected for secondary electron–positron pairs at SNR shocks Blasi 
( 2009 ). 

On the other hand, downstream of the shock the production of 
secondary nuclei can take place anywhere before reaching the free 
escape boundary. It is then clear that most 3 He is produced down- 
stream. In turn, 3 He also undergoes spallation reactions downstream, 
which deplete its flux, especially at low energies where transport is 
dominated by advection. At the highest energies the escape from 
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General implications of gamma rays from SC for CR
 The results presented above suggest that with the standard values of the gas density inferred from observations of clouds in 
the region of the Cygnus cocoon, the grammage felt by CR while escaping must be ~50 g cm-2 >> Galactic 
Grammage!!! 
 This would have dramatic implications for the origin of CRs if at least a fraction of them are produced in star 
clusters that resemble the Cygnus cocoon 

 One might wonder whether this implication can somehow be weakened, for instance changing the acceleration efficiency or 
even the whole scenario of particle acceleration in star clusters 

 Here I will consider two very different models and explore the question: what do these two models imply in terms of the 
LHAASO data at Eγ>1 TeV from Cygnus?

CR are accelerated in the 
center by a continuous source 

and diffuse outward

CR are accelerated at the 
Termination Shock and 

produce gamma on their way 
out
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General implications of gamma rays from SC for CR

0 50 100 150 200 250
Distance (pc)

0

2

4

6

8

10

D
e
n
si

ty
 (

cm
-3
)

0 2 4 6 8 10
θ (deg)

1021

1022

C
o
lu

m
n
 D

e
n
si

ty
 (

cm
-2
)

Figure 10: Solid curves show the 1D radial density distribution of HI gas (the left panel) employed in our modeling (see Eq. 2) and the corresponding 1D column
density distribution (the right panel). The red dashed curve in the right panel shows the observed 1D radial distribution of the intensity of the 21 cm HI emission,
which is multiplied by an arbitrary factor for comparing the shape of its distribution with the assumed one in modeling.

with the total mass of 1.2 → 106
M↑ for MCs according to the mass inferred from the CO emission within the green circle (with

a radius of 3↓) in the top-left panel of Fig 7. Its density distribution is also assumed to follow a 3D Gaussian function, with
ωMC = 25 pc since the angular size of the clump is ↔ 1↓. The projected distances of the CO clumps are about 50 pc (or an angular
separation about 2↓ from the center of the bubble), but this is not necessarily the physical distance of the cloud from the central
CR source. In the model, the true distance of the cloud to the CR source is adjusted as a model parameter to reproduce the flux
extracted by the CO template, while keeping their projected distances from the CR source to be yMC = ↗50 pc. The gamma-ray
emission associated with the CO template outside 3↓ appears rather diffuse without significant clustering. We therefore assume a
homogeneous distribution of molecular gas with hydrogen density n1 in addition to the compact cloud. Thus the density distribution
is

nMC(x, y, z) =
MMC

(2ε)3/2ω3
MCmH

exp
{
↗[x ↗ xMC)2 + (y ↗ yMC)2 + z

2]/2ω2
MC

}
+ n1

To reproduce the observation that the mass of MC within 3↓ from the source center is 1.2→ 106
M↑ and the total mass of MC within

10↓ from the source center is 3.2→ 106
M↑, we set MMC ↘ 1.2→ 106

M↑ and n1 ↘ 1 cm↗3. As mentioned earlier, the gamma-ray flux
associated with the inner 3↓ of the CO template is about 40% of the flux extracted by the entire CO template. To reproduce this
result in the model, we found the physical distance of the compact MC cloud need be about 100 pc from the source center, leading
to xMC = 86.6 pc.

Given the proton distribution Eq. (1) and the gas distribution Eqs. (2) and (7), we can obtain the gamma-ray emissivity at each
spatial point and then integrate over the LOS towards different direction to obtain a 2D intensity map at different energy. The pionic
gamma-ray flux (and the accompanying neutrino flux) is calculated following the semi-analytical method developed by Kelner et
al.[24]. We can then further integrate over the solid angle to obtain the total flux and average over the azimuthal angle to get the 1D
surface brightness profile.

In Fig. 4, we have compared the model prediction with the broadband gamma-ray spectrum measured from the entire bubble,
as well as those of different components. The latter includes the spectrum extracted by the compact Gaussian template (the core
region), by the extended Gaussian template, and by the CO template, respectively. The core has an extension of 0.38↓ as depicted
by the standard deviation of the 2D Gaussian function. We therefore integrate over the emission arising from interactions between
protons and the atomic gas within a radius of 30 pc, corresponding to the 3ω extension of the compact Gaussian template (at a
nominal distance of 1.46 kpc), which is also the assumed injection sphere of protons in the model. Then we compare the integrated
flux to the flux measured from the core. Similarly, the extended Gaussian component of LHAASO has an extension of roughly 2↓,
comparable to that of the Cygnus Cocoon measured by Fermi-LAT. We integrate over the emission within a radius of 150 pc from
the center, which corresponds to the 3ω extension of the extended Gaussian component. The obtained flux is consistent with the
spectra of Fermi-LAT Cocoon and the Gaussian component. The flux produced by protons and the molecular clumps are compared

20

correlates with the diffuse HI gas distribution. On top of the
amorphous ω-ray component associated with the HI gas, a sec-
ond component, clearly associated with dense, massive molec-
ular clouds, is seen in the first row of Figure 2.

To measure the flux of ω-rays produced in the bubble, the
contamination introduced by GDE should be subtracted. The
latter could be significant, especially at the periphery of the bub-
ble. Recently, LHAASO-KM2A has measured GDE from two
different regions of the Galactic plane [12]. The reported GDE
flux in the inner Galaxy is at least 2-3 times higher than the pre-
dicted flux assuming a homogeneous ‘Cosmic Ray Sea’, while
the GDE in the outer Galaxy is almost consistent with predic-
tions. Here, the GDE in the IOR is estimated by re-scaling ac-
cording to the gas column densities in corresponding directions.
The estimated GDE distributions [12] from two directions are
shown in Figure 2. The origin of the enhanced GDE fluxes
towards the inner Galaxy is under debate. As demonstrated be-
low, the size of Cygnus Bubble may extend to several hundreds
of pc from the center, which is beyond the radius of the mask
region used in the GDE measurements[12]. Thus, it is possible
that the GDE measured in the inner Galaxy contains signifi-
cant components consisting of the superposition of large-scale
structures (like the Cygnus Bubble) near the CR accelerators.
Nevertheless, even if we apply the measured GDE flux from
the inner Galaxy to the Cygnus region, there is a clear excess
within a radius of about 6→ corresponding to the physical size
of about 150 pc, as shown in the bottom row of Figure 2. Such
conservative treatment of the GDE flux makes the estimation of
the size of the bubble very robust.

The Spectral Energy Distribution (SED) of gamma-rays in-
tegrated over the region with an angular radius 6→ is shown in
Figure 3.

The noticeably curved spectrum is well described by a log-
parabola form. The photon index (the local power-law slope),
Γ(E) = (2.71 ± 0.02) + (0.11 ± 0.02) ↑ log10(E/10 TeV), grad-
ually increases with energy at least up to 2 PeV without indi-
cating a sharp cutoff. The good agreement between the WCDA
and KM2A data around 20 TeV allows a critical cross-check
between different methods of spectral measurements. The mea-
sured (red) points characterize the fluxes of the bubble, but they
are not free of pollution caused by GDE. The latter contains
large uncertainties, which are transferred to the genuine flux of
the bubble.

In Figure 3, we show the calculated diffuse gamma-ray flux
(black curve) under the assumption that they are produced by
interactions of the homogeneous CR sea to be representative
of the locally measured CR flux. These calculations have non-
negligible uncertainty related to the direct measurements of CR
fluxes, especially around the CR knee at ↓1 PeV [13]. However,
the latter cannot explain the large difference (by a factor of 5)
between the flux measured toward the bubble and the estimated
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Figure 3: The ω-ray flux detected toward Cygnus X integrated over the region of
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6

LHAASO 2024



Model 1: diffusion from a central source

A&A proofs: manuscript no. output

Alemanno et al. 2021) and CALET (Adriani et al. 2022,55
2023). The disappointing by-product of this finding is that56
in this case heavier nuclei are completely destroyed inside57
the bubble, so that SCs cannot contribute an appreciable58
flux of nuclei heavier than He.59

This was the first symptom of a more general implica-60
tion of the detection of gamma rays from the Cygnus SC61
and other clusters as well, though at lower energies: such62
as detection forces us to conclude that if CRs in SCs need63
to cross a large grammage inside the bubble in order to64
accommodate the observed gamma ray flux in the TeV en-65
ergy range. Hence, either SCs are not contributors to the66
Galactic CR flux or we are forced to conclude that an ap-67
preciable part or even all of the grammage measured at the68
earth has to be accumulated by CRs while escaping a SC.69
Below we consider two very di!erent models for the ori-70
gin of the gamma ray emission observed by LHAASO in71
the direction of the Cygnus cocoon for Eω ↭TeV, and we72
show that this implies a grammage for CRs with E ↭ 1073
TeV that exceeds the one inferred from secondary/primary74
ratios (Evoli et al. 2019, 2020; Schroer et al. 2021). The75
implications for lower energy CRs are also discussed.76

The article is organised as follows: in §2 we discuss the77
gamma ray emission in two models of CR production in the78
Cygnus cocoon, one based on acceleration at the termina-79
tion shock and one, similar to the one discussed in Lhaaso80
Collaboration (2024), where CRs are injected in the core81
and di!use outwards in the bubble. In §3 we discuss the82
implications of the gamma ray measurements by LHAASO83
(Lhaaso Collaboration 2024) for CR grammage and for un-84
stable elements, comparing the results with standard mod-85
els of CR transport in the Galaxy. In §4 we outline our86
conclusions.87

2. Models of gamma ray production in SCs88

As we discuss below, the e!ect of the grammage is so macro-89
scopic that a sophisticated treatment of pp interactions is90
not required. Moreover, in the analysis below, we will focus91
on gamma ray energies ↭ 1 TeV, where scaling relations92
are su"ciently accurate for our purpose here. We assume93
that gamma rays with given energy Eω are produced by94
protons with energy E such that Eω = ωE. The cross sec-95
tion for inelastic pp interactions is considered as constant,96
εpp = 32 mb. The slight increase of the cross section with97
energy would make the result below even more prominent.98

Here we consider two models of CR transport in the99
SC. In Model 1 we assume, following (Lhaaso Collabora-100
tion 2024), that a source in the center of the SC continu-101
ously injects CRs with a spectrum Q(E) = A(E/mp)→ε,102
with ϑ ↭ 2. We also follow (Lhaaso Collaboration 2024) in103
assuming here that transport is purely di!usive with di!u-104
sion coe"cient D(E). In the energy region of interest here,105
E ↭ 1 TeV, the di!usion equation can be used in its station-106
ary form, so that the CR density of energy E at distance r107
from the center is108

nCR(r, E) =
Q(E)

4ϖrD(E)
. (1)

The injection spectrum is normalized to a fraction ϱCR of109
the luminosity LSC of the SC, through110

Q(E) = ϱCR
LSC(ϑ→ 2)

(mpc2)2

(
E

mp

)→ε

, (2)

where we assumed that the energy in the form of CRs is 111
dominated by relativistic particles, namely E ↭ mp. Within 112
a factor of order unity this is a good approximation for 113
2 ↫ ϑ ↫ 3, as expected from di!usive shock acceleration 114
(DSA). These source spectra are also compatible with those 115
found in (Lhaaso Collaboration 2024) to provide a good fit 116
to the observed gamma ray emission. 117

In the second model (Model 2), we follow Morlino et al. 118
(2021); Blasi & Morlino (2023) in assuming that particle 119
acceleration takes place at the termination shock of the 120
collective wind. The structure of the bubble is properly de- 121
scribed by Morlino et al. (2021): the location of the ter- 122
mination shock is at r = Rsh, while the bubble extends 123
to r = Rb, but as we will see below we do not need to 124
write these quantities explicitly. Particle acceleration is as- 125
sumed to transform a fraction of the luminosity of the wind, 126

Lw = (1/2)Ṁv2w, where Ṁ is the rate of mass loss in 127
the form of a collective wind and vw is the wind veloc- 128
ity. The structure of the bubble is such that the shocked 129
wind, namely the plasma behind the termination shock has 130
a velocity v(r) = (vw/4)(r/Rsh)→2, assuming that the ter- 131
mination shock is strong (compression factor of 4). The 132
density downstream of the shock is constant. In the wind 133
region, the velocity is constant to the value vw, while the 134
density is 135

ςw(r) =
Ṁ

4ϖr2vw
. (3)

Assuming again that the density of accelerated particles 136
at the termination shock has the shape of a power law, 137
nCR(E) = A(E/mp)→ε, and that the energy in the form of 138

accelerated particles carries a fraction ϱCR of ςw(Rsh)v
2
w, it 139

is easy to derive: 140

nCR(E) = ϱCR
Ṁvw(ϑ→ 2)

4ϖR2
sh(mpc2)2

(
E

mp

)→ε

. (4)

In the following we will assume that this density remains 141
constant downstream of the termination shock: while this 142
is a better approximation at E ↫ 1 TeV than at higher 143
energies, where escape from the bubble becomes dominated 144
by di!usion rather than advection, it also maximises the 145
gamma ray emission, making the results illustrated below 146
even stronger. 147

In the following we will denote as ngas the mean gas 148
density in the bubble, to be interpreted as the volume av- 149
eraged gas density, dominated by the clumpy structure of 150
atomic and molecular gas (see discussion in (Blasi & Mor- 151
lino 2024)). We will assume that this density is constant 152
throughout the bubble, since the avilable information on 153
the spatial distribution of the gas is very poor (see also 154
discussion in (Menchiari et al. 2023)). 155

2.1. Gamma ray emission in Model 1: di!usion model 156

As discussed above, this is a simple model, adopted in 157
Lhaaso Collaboration (2024), where an unknown source in 158
the SC core injects CRs and these particles move outward 159
only due to di!usion (there is no bulk motion of the plasma, 160
which corresponds to the situation in which the SC is un- 161
able to launch a collective wind). 162

The emissivity in the form of gamma rays can be written 163
as: 164

Jω(Eω)dEω = nCR(E)dEngascεpp. (5)
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Using the assumption that Eω = ωE, one can write165

Jω(Eω)E
2
ω = εCR

LSC(ϑ→ 2)

4ϖrD(E)
ωε→1

(
Eω

mp

)→ε+2

ngascϱpp.

(6)

It follows that the gamma ray flux from the entire bubble
can be estimated as

E2
ω!ω(Eω) =

∫ Rb

0
dr

r2

d2
εCR

LSC(ϑ→ 2)

4ϖrD(E)
ωε→1

(
Eω

mp

)→ε+2

166

↑ngascϱpp = εCR
LSC(ϑ→ 2)

4ϖd2D(E)
ωε→1

(
Eω

mp

)→ε+2 R2
b

2
ngascϱpp.

(7)

The escape time from the bubble in a purely di!usive case167
is ςb = R2

b/6D(E), so that we can introduce the grammage168
traversed by particles while escaping the bubble as169

X(E) = ngasmpcςb(E) = ngasmpc
R2

b

6D(E)
. (8)

This allows us to rewrite Eq. 7 as:170

E2
ω!ω(Eω) =

3εCRLSC(ϑ→ 2)ωε→1

4ϖd2

(
Eω

mp

)→ε+2 X(E)

Xcr
,

(9)

where Xcr = mp/ϱpp is the critical grammage for pp inter-171
actions. As written here, the dependence of the gamma ray172
flux upon the grammage traversed by CRs in escaping the173
bubble is made explicit and within a factor of order unity174
it can be used also in the case that the spatial dependence175
of ngas on radius is not flat.176

2.2. Gamma ray emission in Model 2: acceleration at the177
termination shock178

With the same assumptions on pp collisions adoped above,179
the gamma ray emissivity in the case of particle acceleration180
at the termination shock can be written as:181

Jω(Eω) = εCR
Ṁvw(ϑ→ 2)

4ϖR2
sh(mpc2)2

ωε→1

(
Eω

mp

)→ε

ngascϱpp.

(10)

The integral over the downstream of the terminations182
hsock, the region that dominates the gamma ray emission183
in this model, leads to:184

E2
ω!ω(Eω) =

εCRṀvw(ϑ→ 2)

4ϖR2
sh

ωε→1

(
Eω

mp

)→ε+2 R3
b

3d2
ngascϱpp.

(11)

In order to maximize the gamma ray flux predicted by the185
model and strengthen our conclusions, we assume here that186
particle escape from the bubble is dominated by advection.187
As discussed by Blasi & Morlino (2024), at energies ↭ 1188
TeV escape becomes dominated by di!usion, but this leads189
to a smaller e!ective emission region for gamma rays and190

correspondingly smaller gamma rays ray flux, hence our as- 191
sumption is conservative in terms of deriving constraints on 192
the grammage inside the bubble. Recalling that the plasma 193
velocity drops downstream of the termination shock, we can 194
write: 195

dr

dt
=

vw
4

(
r

Rsh

)→2

↓ ςadv ↔ 4

3

Rsh

vw

(
Rb

Rsh

)3

, (12)

where for simplicity we assumed that Rb ↗ Rsh. Replacing 196
this expression in Eq. 11, we easily obtain: 197

E2
ω!ω(Eω) =

2εCRLw(ϑ→ 2)ωε→1

4ϖd2

(
Eω

mp

)→ε+2 X(E)

Xcr
,

(13)

where we introduced Lw = (1/2)Ṁv2w as the wind luminos- 198
ity, and the grammage is now 199

X(E) = ngasmpcςadv. (14)

A quick comparison between Eqs. 9 and 13 immediately 200
suggests that the two models of CR transport used here are 201
going to lead to very similar constrains in terms of gram- 202
mage, although the definition of grammage is di!erent in 203
the two cases. 204

3. Constraints on the grammage inside the Cygnus 205

cocoon 206

The LHAASO experiment has recently measured the 207
gamma ray flux with energy above 1 TeV at the level of 208
E2

ω!ω(Eω) ↘ 6↑ 10→11erg cm→2 s→1, over a region that ex- 209
tends ≃ 150 pc from the center of Cygnus SC. The emis- 210
sion is claimed to have hadronic origin, and it is di"cult 211
to imagine otherwise given the extended morphology of the 212
emission and the spectral shape. The slope of the spectrum 213
is ≃ 2.7 and whether this is associated with the spectrum 214
of the accelerated particles, the energy dependent di!usion 215
coe"cient or the shape of the cuto! in the spectrum of 216
accelerated particles depends on the adopted model. This 217
point is however of little interest for the point we are making 218
here, in that we focus on the lowest energy bin of the data, 219
at 1 TeV and investigate the dependence of our constraints 220
on the value of ϑ, the slope of the injection spectrum. 221

In Model 1, we normalize the luminosity to LSC = 222
1039L39erg/s and we adopt d = 1.4 kpc for the dis- 223
tance to the Cygnus cocoon. Notice that photons with 224
energy Eω are produced by protons with energy E = 225
10 TeV, hence we will be able to constrain the gram- 226
mage traversed in the SC by protons with 10 TeV en- 227
ergy. The gamma ray flux computed using Eq. 9 can be 228
written as E2

ω!ω ↔ 7.6 ↑ 10→10εCRL39X(E) erg cm→2 s→1 229

(2.64 ↑ 10→10εCRL39X(E) erg cm→2 s→1) for ϑ = 2.2 (ϑ = 230
2.4). Comparing this prediction with the flux as mea- 231
sured by LHAASO we get a grammage X(E = 10TeV ) ↔ 232

0.08ε→1
CRL

→1
39 g cm→2 (0.25ε→1

CRL
→1
39 g cm→2) for ϑ = 2.2 (ϑ = 233

2.4). 234
Finally requiring a reasonable e"ciency of particle ac- 235

celeration, say εCR ↫ 0.1, we immediately infer that in 236
order to account for the gamma ray flux observed by 237
LHAASO the grammage required for Model 1 has to be 238
X(E = 10TeV ) ↭ 0.8L→1

39 g cm→2 for ϑ = 2.2 and X(E = 239

10TeV ) ↭ 2.5L→1
39 g cm→2 for ϑ = 2.4. 240
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Ṁvw(ϑ→ 2)

4ϖR2
sh(mpc2)2

ωε→1

(
Eω

mp

)→ε

ngascϱpp.

(10)

The integral over the downstream of the terminations182
hsock, the region that dominates the gamma ray emission183
in this model, leads to:184

E2
ω!ω(Eω) =
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Using the assumption that Eω = ωE, one can write165
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It follows that the gamma ray flux from the entire bubble
can be estimated as
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The escape time from the bubble in a purely di!usive case167
is ςb = R2

b/6D(E), so that we can introduce the grammage168
traversed by particles while escaping the bubble as169

X(E) = ngasmpcςb(E) = ngasmpc
R2

b

6D(E)
. (8)

This allows us to rewrite Eq. 7 as:170

E2
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3εCRLSC(ϑ→ 2)ωε→1

4ϖd2
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Eω

mp

)→ε+2 X(E)

Xcr
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where Xcr = mp/ϱpp is the critical grammage for pp inter-171
actions. As written here, the dependence of the gamma ray172
flux upon the grammage traversed by CRs in escaping the173
bubble is made explicit and within a factor of order unity174
it can be used also in the case that the spatial dependence175
of ngas on radius is not flat.176

2.2. Gamma ray emission in Model 2: acceleration at the177
termination shock178

With the same assumptions on pp collisions adoped above,179
the gamma ray emissivity in the case of particle acceleration180
at the termination shock can be written as:181
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The integral over the downstream of the terminations182
hsock, the region that dominates the gamma ray emission183
in this model, leads to:184
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In order to maximize the gamma ray flux predicted by the185
model and strengthen our conclusions, we assume here that186
particle escape from the bubble is dominated by advection.187
As discussed by Blasi & Morlino (2024), at energies ↭ 1188
TeV escape becomes dominated by di!usion, but this leads189
to a smaller e!ective emission region for gamma rays and190

correspondingly smaller gamma rays ray flux, hence our as- 191
sumption is conservative in terms of deriving constraints on 192
the grammage inside the bubble. Recalling that the plasma 193
velocity drops downstream of the termination shock, we can 194
write: 195
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where for simplicity we assumed that Rb ↗ Rsh. Replacing 196
this expression in Eq. 11, we easily obtain: 197
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2εCRLw(ϑ→ 2)ωε→1
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(
Eω

mp

)→ε+2 X(E)

Xcr
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(13)

where we introduced Lw = (1/2)Ṁv2w as the wind luminos- 198
ity, and the grammage is now 199

X(E) = ngasmpcςadv. (14)

A quick comparison between Eqs. 9 and 13 immediately 200
suggests that the two models of CR transport used here are 201
going to lead to very similar constrains in terms of gram- 202
mage, although the definition of grammage is di!erent in 203
the two cases. 204

3. Constraints on the grammage inside the Cygnus 205

cocoon 206

The LHAASO experiment has recently measured the 207
gamma ray flux with energy above 1 TeV at the level of 208
E2

ω!ω(Eω) ↘ 6↑ 10→11erg cm→2 s→1, over a region that ex- 209
tends ≃ 150 pc from the center of Cygnus SC. The emis- 210
sion is claimed to have hadronic origin, and it is di"cult 211
to imagine otherwise given the extended morphology of the 212
emission and the spectral shape. The slope of the spectrum 213
is ≃ 2.7 and whether this is associated with the spectrum 214
of the accelerated particles, the energy dependent di!usion 215
coe"cient or the shape of the cuto! in the spectrum of 216
accelerated particles depends on the adopted model. This 217
point is however of little interest for the point we are making 218
here, in that we focus on the lowest energy bin of the data, 219
at 1 TeV and investigate the dependence of our constraints 220
on the value of ϑ, the slope of the injection spectrum. 221

In Model 1, we normalize the luminosity to LSC = 222
1039L39erg/s and we adopt d = 1.4 kpc for the dis- 223
tance to the Cygnus cocoon. Notice that photons with 224
energy Eω are produced by protons with energy E = 225
10 TeV, hence we will be able to constrain the gram- 226
mage traversed in the SC by protons with 10 TeV en- 227
ergy. The gamma ray flux computed using Eq. 9 can be 228
written as E2

ω!ω ↔ 7.6 ↑ 10→10εCRL39X(E) erg cm→2 s→1 229

(2.64 ↑ 10→10εCRL39X(E) erg cm→2 s→1) for ϑ = 2.2 (ϑ = 230
2.4). Comparing this prediction with the flux as mea- 231
sured by LHAASO we get a grammage X(E = 10TeV ) ↔ 232

0.08ε→1
CRL

→1
39 g cm→2 (0.25ε→1

CRL
→1
39 g cm→2) for ϑ = 2.2 (ϑ = 233

2.4). 234
Finally requiring a reasonable e"ciency of particle ac- 235

celeration, say εCR ↫ 0.1, we immediately infer that in 236
order to account for the gamma ray flux observed by 237
LHAASO the grammage required for Model 1 has to be 238
X(E = 10TeV ) ↭ 0.8L→1

39 g cm→2 for ϑ = 2.2 and X(E = 239

10TeV ) ↭ 2.5L→1
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The expected gamma ray emission at a given energy can be estimated as only function of the grammage X(E) in the bubble and the 
conversion efficiency of the SC luminosity LSC to CR
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Figure 1. Schematic structure of a wind blown bubble excavated by a star 
cluster into the ISM: R s is the position of the TS, R b is the radius of the FS. 
downstream of the TS and the spectrum of particles escaping the 
ca vity exca v ated by the wind can be considerably af fected by such 
losses, at least for massive clusters. This effect shapes the spectrum of 
CR protons released into the ISM, at least for particles with energies 
such that their transport in the cavity is dominated by advection. We 
specialize these general predictions to the case of the Cygnus cocoon, 
for which detailed spectral and morphological information are now 
available. 

The article is organized as follows: in Section 2 we briefly 
summarize the general properties of the wind blown cavity and 
the role of cooling and clumpiness in the distribution of cold gas. 
In Section 3 , we discuss the main considerations that enter the 
calculation of the maximum energy of accelerated particles at the 
TS. In Section 4 , we describe the numerical solution of the transport 
equation of non-thermal particles in the cavity and the associated 
dif fusi ve particle acceleration at the TS. In Section 5 , we describe 
our results in terms of spectrum of accelerated particles and gamma- 
ray emission. We specialize our findings to the description of the 
spectrum and spatial morphology of the gamma-ray emission from 
the Cygnus cocoon. In Section 6 , we outline our conclusions. 
2  T H E  W I N D  BLOWN  BUBBLE  
In Fig. 1 we show a schematic view of the cavity blown by the 
collective wind of the stars located in the central re gion. We e xplicitly 
assume here to be dealing with a compact star cluster, namely a 
cluster in which the TS is located well outside the region where the 
stars are concentrated. 

Immediately outside the stellar cluster, the winds of the individual 
objects merge into a collective wind, with a velocity v w . The wind 
density is obtained from mass conservation: 
ρw ( r ) = Ṁ 

4 πr 2 v w , r > R c , (1) 
where R c is the radius of the core where the stars are concentrated, 
and Ṁ is the rate of mass-loss due to the collective wind. The impact 
of the supersonic wind with the ISM, assumed here to have a constant 
density ρ0 , produces a FS at position R b , while the shocked wind is 
bound by a TS, at a location R s . The shocked ISM and the shocked 
wind are separated by a contact discontinuity (not shown in Fig. 1 ), 

very close to the FS. The region between the contact discontinuity 
and the FS should contain dense cold interstellar gas, plowed away 
during the expansion of the cavity. Ho we ver, se veral instabilities are 
expected to spread this gas inside the cavity while the bubble is 
being blown. Hence clouds of dense molecular gas and regions of 
dense atomic gas are expected to fill, more or less homogeneously, 
the cavity. We will refer to the density of this gas as ρ (we will use 
the symbol n to indicate the number density in the bubble). One can 
easily check that for typical values of the parameters, the density 
contributed by the wind is completely negligible, especially in terms 
of gamma-ray production. 

Since the typical cooling time-scale of the shocked ISM is only 
∼10 4 yr, while the cooling time for the shocked wind is several 10 7 yr 
(Koo & McKee 1992a , b ), we can safely assume that the wind-blown 
b ubble ev olv es quasi-adiabatically. F ollowing Weav er et al. ( 1977 ) 
and Gupta et al. ( 2018 ), Morlino et al. ( 2021b ) provided some useful 
approximations for the position of the FS and the TS, that we use 
here. The position of the FS is at 
R b ( t) = 139 ρ−1 / 5 

10 Ṁ 1 / 5 −4 v 2 / 5 8 t 3 / 5 10 pc , (2) 
where ρ10 is the ISM density in the region around the star clus- 
ter in units of 10 protons cm –3 , v 8 = v w / (1000 km s −1 ), Ṁ −4 = 
Ṁ / (10 −4 M # yr −1 ) and t 10 is the dynamical time in units of 10 million 
yr. The wind luminosity is then L w = 1 

2 Ṁ v 2 w . The TS is located at 
R s = 24 . 3 Ṁ 3 / 10 

−4 v 1 / 10 
8 ρ

−3 / 10 
10 t 2 / 5 10 pc . (3) 

A more accurate calculation (Weaver et al. 1977 ) shows that the 
results earlier are accurate within ! 10 per cent . We stress again 
that the speed of the TS in the laboratory frame is very low, so that 
the entire bubble structure evolves slowly and can be considered 
as stationary to first approximation. It is worth stressing that the 
formation of a collective wind occurs only for compact clusters that 
have a typical cluster size R c $ R s (see, e.g. Gupta et al. 2020 ). 
2.1 Cooling effects and clumpiness 
In the model described earlier, the v olume a veraged density and 
temperature of the hot-shocked wind can be estimated as 
n b = Ṁ t age 

4 π/ 3 R 3 b = 3 . 6 × 10 −3 ρ3 / 5 
10 Ṁ 2 / 5 −4 v −6 / 5 

8 t −4 / 5 
10 cm −3 (4) 

and 
T b = P 

n b k B & 10 7 L 2 / 5 w, 38 n 3 / 5 10 n −1 
b, −2 t −4 / 5 

10 K , (5) 
respectively, where we introduced n b, −2 = n b / 10 −2 cm −3 . Alterna- 
tiv ely, cooling, that we ne glected in the estimates earlier, leads 
to a reduction of the temperature and therefore a smaller size 
of the bubble. Gupta et al. ( 2016 ) retained the effect of cooling 
and accounted for the radiation pressure from the stars, using 1D 
hydrodynamical simulations. In this way, they predict a bubble size 
that is smaller by ∼ 30 per cent at an age of a few Myr and a 
temperature roughly one order of magnitude smaller than the one 
estimated in equation ( 5 ). These effects appear rather mild in terms 
of the global structure of the bubble and the associated high-energy 
phenomenology. Ho we ver, the simulations of Gupta et al. ( 2016 ), 
being 1D in space, do not account for the possible presence of clumps 
in the bubble that may enhance the effect of cooling. 

The presence of dense clumps in the bubble is especially important 
for the problem discussed here, in that it may affect the strength and 
morphology of the gamma-ray signal. As we discuss in Section 5 , the 
present gamma-ray observations show that the average gas density 
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Most gamma rays are produced downstream of the termination shock 

The spectrum of particles accelerated at the TS can be written easily by assuming the 
conversion of a fraction of the kinetic energy of the wind is converted to CR 

If we assume that this density remains constant downstream we maximise the gamma ray 
flux
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Alemanno et al. 2021) and CALET (Adriani et al. 2022,55
2023). The disappointing by-product of this finding is that56
in this case heavier nuclei are completely destroyed inside57
the bubble, so that SCs cannot contribute an appreciable58
flux of nuclei heavier than He.59

This was the first symptom of a more general implica-60
tion of the detection of gamma rays from the Cygnus SC61
and other clusters as well, though at lower energies: such62
as detection forces us to conclude that if CRs in SCs need63
to cross a large grammage inside the bubble in order to64
accommodate the observed gamma ray flux in the TeV en-65
ergy range. Hence, either SCs are not contributors to the66
Galactic CR flux or we are forced to conclude that an ap-67
preciable part or even all of the grammage measured at the68
earth has to be accumulated by CRs while escaping a SC.69
Below we consider two very di!erent models for the ori-70
gin of the gamma ray emission observed by LHAASO in71
the direction of the Cygnus cocoon for Eω ↭TeV, and we72
show that this implies a grammage for CRs with E ↭ 1073
TeV that exceeds the one inferred from secondary/primary74
ratios (Evoli et al. 2019, 2020; Schroer et al. 2021). The75
implications for lower energy CRs are also discussed.76

The article is organised as follows: in §2 we discuss the77
gamma ray emission in two models of CR production in the78
Cygnus cocoon, one based on acceleration at the termina-79
tion shock and one, similar to the one discussed in Lhaaso80
Collaboration (2024), where CRs are injected in the core81
and di!use outwards in the bubble. In §3 we discuss the82
implications of the gamma ray measurements by LHAASO83
(Lhaaso Collaboration 2024) for CR grammage and for un-84
stable elements, comparing the results with standard mod-85
els of CR transport in the Galaxy. In §4 we outline our86
conclusions.87

2. Models of gamma ray production in SCs88

As we discuss below, the e!ect of the grammage is so macro-89
scopic that a sophisticated treatment of pp interactions is90
not required. Moreover, in the analysis below, we will focus91
on gamma ray energies ↭ 1 TeV, where scaling relations92
are su"ciently accurate for our purpose here. We assume93
that gamma rays with given energy Eω are produced by94
protons with energy E such that Eω = ωE. The cross sec-95
tion for inelastic pp interactions is considered as constant,96
εpp = 32 mb. The slight increase of the cross section with97
energy would make the result below even more prominent.98

Here we consider two models of CR transport in the99
SC. In Model 1 we assume, following (Lhaaso Collabora-100
tion 2024), that a source in the center of the SC continu-101
ously injects CRs with a spectrum Q(E) = A(E/mp)→ε,102
with ϑ ↭ 2. We also follow (Lhaaso Collaboration 2024) in103
assuming here that transport is purely di!usive with di!u-104
sion coe"cient D(E). In the energy region of interest here,105
E ↭ 1 TeV, the di!usion equation can be used in its station-106
ary form, so that the CR density of energy E at distance r107
from the center is108

nCR(r, E) =
Q(E)

4ϖrD(E)
. (1)

The injection spectrum is normalized to a fraction ϱCR of109
the luminosity LSC of the SC, through110

Q(E) = ϱCR
LSC(ϑ→ 2)

(mpc2)2

(
E

mp

)→ε

, (2)

where we assumed that the energy in the form of CRs is 111
dominated by relativistic particles, namely E ↭ mp. Within 112
a factor of order unity this is a good approximation for 113
2 ↫ ϑ ↫ 3, as expected from di!usive shock acceleration 114
(DSA). These source spectra are also compatible with those 115
found in (Lhaaso Collaboration 2024) to provide a good fit 116
to the observed gamma ray emission. 117

In the second model (Model 2), we follow Morlino et al. 118
(2021); Blasi & Morlino (2023) in assuming that particle 119
acceleration takes place at the termination shock of the 120
collective wind. The structure of the bubble is properly de- 121
scribed by Morlino et al. (2021): the location of the ter- 122
mination shock is at r = Rsh, while the bubble extends 123
to r = Rb, but as we will see below we do not need to 124
write these quantities explicitly. Particle acceleration is as- 125
sumed to transform a fraction of the luminosity of the wind, 126

Lw = (1/2)Ṁv2w, where Ṁ is the rate of mass loss in 127
the form of a collective wind and vw is the wind veloc- 128
ity. The structure of the bubble is such that the shocked 129
wind, namely the plasma behind the termination shock has 130
a velocity v(r) = (vw/4)(r/Rsh)→2, assuming that the ter- 131
mination shock is strong (compression factor of 4). The 132
density downstream of the shock is constant. In the wind 133
region, the velocity is constant to the value vw, while the 134
density is 135

ςw(r) =
Ṁ

4ϖr2vw
. (3)

Assuming again that the density of accelerated particles 136
at the termination shock has the shape of a power law, 137
nCR(E) = A(E/mp)→ε, and that the energy in the form of 138

accelerated particles carries a fraction ϱCR of ςw(Rsh)v
2
w, it 139

is easy to derive: 140

nCR(E) = ϱCR
Ṁvw(ϑ→ 2)

4ϖR2
sh(mpc2)2

(
E

mp

)→ε

. (4)

In the following we will assume that this density remains 141
constant downstream of the termination shock: while this 142
is a better approximation at E ↫ 1 TeV than at higher 143
energies, where escape from the bubble becomes dominated 144
by di!usion rather than advection, it also maximises the 145
gamma ray emission, making the results illustrated below 146
even stronger. 147

In the following we will denote as ngas the mean gas 148
density in the bubble, to be interpreted as the volume av- 149
eraged gas density, dominated by the clumpy structure of 150
atomic and molecular gas (see discussion in (Blasi & Mor- 151
lino 2024)). We will assume that this density is constant 152
throughout the bubble, since the avilable information on 153
the spatial distribution of the gas is very poor (see also 154
discussion in (Menchiari et al. 2023)). 155

2.1. Gamma ray emission in Model 1: di!usion model 156

As discussed above, this is a simple model, adopted in 157
Lhaaso Collaboration (2024), where an unknown source in 158
the SC core injects CRs and these particles move outward 159
only due to di!usion (there is no bulk motion of the plasma, 160
which corresponds to the situation in which the SC is un- 161
able to launch a collective wind). 162

The emissivity in the form of gamma rays can be written 163
as: 164

Jω(Eω)dEω = nCR(E)dEngascεpp. (5)
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It follows that the gamma ray flux from the entire bubble
can be estimated as

E2
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0
dr

r2

d2
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ωε→1
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Eω

mp

)→ε+2
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The escape time from the bubble in a purely di!usive case167
is ςb = R2

b/6D(E), so that we can introduce the grammage168
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εCRṀvw(ϑ→ 2)

4ϖR2
sh

ωε→1

(
Eω

mp

)→ε+2 R3
b

3d2
ngascϱpp.

(11)

In order to maximize the gamma ray flux predicted by the185
model and strengthen our conclusions, we assume here that186
particle escape from the bubble is dominated by advection.187
As discussed by Blasi & Morlino (2024), at energies ↭ 1188
TeV escape becomes dominated by di!usion, but this leads189
to a smaller e!ective emission region for gamma rays and190

correspondingly smaller gamma rays ray flux, hence our as- 191
sumption is conservative in terms of deriving constraints on 192
the grammage inside the bubble. Recalling that the plasma 193
velocity drops downstream of the termination shock, we can 194
write: 195

dr

dt
=

vw
4

(
r

Rsh

)→2

↓ ςadv ↔ 4

3

Rsh

vw

(
Rb

Rsh

)3

, (12)

where for simplicity we assumed that Rb ↗ Rsh. Replacing 196
this expression in Eq. 11, we easily obtain: 197

E2
ω!ω(Eω) =

2εCRLw(ϑ→ 2)ωε→1

4ϖd2

(
Eω

mp

)→ε+2 X(E)

Xcr
,

(13)

where we introduced Lw = (1/2)Ṁv2w as the wind luminos- 198
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is ≃ 2.7 and whether this is associated with the spectrum 214
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where we introduced Lw = (1/2)Ṁv2w as the wind luminos- 198
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going to lead to very similar constrains in terms of gram- 202
mage, although the definition of grammage is di!erent in 203
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sion is claimed to have hadronic origin, and it is di"cult 211
to imagine otherwise given the extended morphology of the 212
emission and the spectral shape. The slope of the spectrum 213
is ≃ 2.7 and whether this is associated with the spectrum 214
of the accelerated particles, the energy dependent di!usion 215
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here, in that we focus on the lowest energy bin of the data, 219
at 1 TeV and investigate the dependence of our constraints 220
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In order to understand the importance of this statement,241
one should recall that the grammage inferred from B/C242
measurements in Galactic CRs at 1 TeV/n is → 0.6g cm→2,243
which extrapolates to 0.3g cm→2 at 10 TeV/n. The gram-244
mage inferred from Model 1 for the grammage accumulated245
in the Cygnus cocoon is by itself larger than the whole246
Galactic grammage. It follows that, if this were the correct247
picture, and if SCs were the sources of the bulk of Galactic248
CRs, then our interpretation of Galactic transport would249
require a profound revision. For Model 1 the situation is250
somewhat more serious than that, because the grammage251
should have the same energy dependence as the di!usion co-252
e"cient. This would imply a grammage in the lower energy253
range that is larger or comparable with the Galactic gram-254
mage at all energies, which is not compatible with Galactic255
transport being tuned to a few percent after the AMS-02256
data Evoli et al. (2019, 2020). Simply a self-consistent de-257
scription of CR data would become hard to achieve.258

In Model 2 we normalize the wind luminos-259
ity to Lw = 1039Lw,39erg/s. The gamma ray260
flux computed using Eq. 13 can be written as261
E2

ω!ω ↑ 5.2 ↓ 10→10ωCRLw,39X(E) erg cm→2 s→1262

(1.6 ↓ 10→10ωCRLw,39X(E) erg cm→2 s→1) for ε = 2.2263
(ε = 2.4). Following the same procedure outlined for264
Model 1, and requiring e"ciency ωCR ↭ 0.1, we infer265
that in order to fit LHAASO data we need a grammage266
X(E = 10TeV ) ↫ 1.2L→1

w,39 g cm
→2 for ε = 2.2 and267

X(E = 10TeV ) ↫ 3.3L→1
w,39 g cm

→2 for ε = 2.4. Both these268
estimates exceed the Galactic CR grammage by at least a269
factor → 4. The limits derived above for Model 2 should be270
considered as absolute lower limits to the grammage, since271
we neglected the di!usive escape of CRs from the cocoon272
at E ↫ 1 TeV (Blasi & Morlino 2024), which would reduce273
the high energy CR density and increased the necessary274
grammage.275

These limits are in excellent agreement with the results276
presented by Blasi & Morlino (2023, 2024), where a gas den-277
sity ngas → 5 ↔ 10 cm→3 was used, in line with the values278
inferred by the Lhaaso Collaboration (2024). Using the ex-279
pressions above, this would correspond to a CR acceleration280
e"ciency at the termination shock ωCR → 0.5%, in agree-281
ment with the values found by Blasi & Morlino (2023). This282
however implies a grammage in the cocoon of → 50 g cm→2,283
which in fact was found to be responsible for the complete284
spallation of heavy nuclei and a slight di!erence between285
the escaping spectra of H and He nuclei (Blasi & Morlino286
2024). Such a value of the grammage would even exceed287
the Galactic grammage inferred for CRs in the →GeV en-288
ergy range. SCs with characteristics similar to those of the289
Cygnus cocoon cannot account for the bulk of Galactic CRs290
unless CR transport is deeply revised.291

4. Discussion292

We have shown that the gamma ray emission observed by293
LHAASO from the direction of the Cygnus cocoon (Cao294
et al. 2021b; Lhaaso Collaboration 2024) leads to an esti-295
mate of the grammage accumulated by particles while leav-296
ing that region, that is in excess of the Galactic grammage,297
at proton energies of → 10 TeV. In Model 1, in which the298
escape of CRs from the SC is solely due to di!usion, this299
excess would extend to lower energies, so that even there300
the accumulated grammage in the SC remains in excess of301

or a large fraction of the grammage that CRs are expected 302
to accumulate in the Galaxy, depending on the energy de- 303
pendence of D(E) inside the SC. 304

In Model 2, where particle acceleration occurs at the 305
termination shock of the collective wind, the lower limits 306
to the grammage inside the bubble are also in excess of 307
the Galactic grammage, but expected to be roughly energy 308
independent. In this model the constraints obtained above 309
are to be interpreted as strict lower limits to the grammage 310
since we neglect the di!usive escape of CRs from the bubble 311
at E ↫ 1 TeV, which would require even larger grammage 312
in the bubble to accommodate the observed gamma ray 313
emission. 314

If to take for granted the average gas density in the bub- 315
ble surrounding the Cygnus cocoon, ngas = 5↔10 cm→3, as 316
inferred in much of the recent literature from direct ob- 317
servation of absorption lines Aharonian et al. (2019); Cao 318
et al. (2021b); Menchiari (2023); Menchiari et al. (2024), 319
the inferred grammage is X → 25 ↔ 50 g cm→2, larger than 320
the total grammage traversed by CRs at →GeV energies, 321
by about one order of magnitude. Not surprisingly, the cal- 322
culations of Blasi & Morlino (2024), applied to the Cygnus 323
cocoon, imply that nuclei heavier than He are basically de- 324
stroyed inside the cocoon, and even for He the spallation 325
reactions are su"ciently severe to harden the He spectrum 326
with respect to H nuclei. As pointed out by Blasi & Mor- 327
lino (2024), in a scenario in which an appreciable amount 328
of CRs are indeed accelerated in SCs, this implies that nu- 329
clei heavier than He are to be accelerated in other classes 330
of sources. In addition, one should be aware that, given the 331
severe spallation in the bubble, the calculations should in- 332
clude the whole chain of spallation reactions, to make sure 333
that the spectra of CRs escaping the SC do not cause fric- 334
tion with the measured spectra in the 1-1000 GeV range, 335
where measurements are at the few percent level of accu- 336
racy. 337

It is clear that the discovery of high energy gamma ray 338
emission from star clusters and most notably from Cygnus 339
represents a milestone in our field of investigation, and a 340
possible clue to the origin of PeV CRs. But the same de- 341
tection also implies that either SCs cannot contribute but 342
a small fraction of Galactic CRs, or our understanding of 343
how CRs accumulate grammage in the Galaxy needs to be 344
deeply revised. 345

Models of the origin of Galactic CRs in which grammage 346
is accumulated near sources were developed by Cowsik & 347
Wilson (1975) and recently revived as a possible explana- 348
tion of the positron fraction rising with energy. These mod- 349
els were recently summarized by Cowsik & Huth (2022). 350
The general idea behind these models is that at low en- 351
ergies, E ↭ 1 TeV, CRs accumulate most grammage in a 352
small region around the sources. Since this is the region, 353
in such models, where B would be produced, the energy 354
dependence of the grammage is fitted to the observed B/C 355
ratio. At higher energies, particles are assumed to accumu- 356
late grammage outside these cocoons, while propagating in 357
a small halo in our Galaxy. In such models positrons are 358
postulated to have a purely secondary origin. 359

General shortcoming of these models are their inability 360
to explain the features observed in the spectra of primary 361
nuclei and the observed ratio of Be/B, a!ected by the decay 362
of 10Be. Nevertheless, in the light of the problems discussed 363
above in relation to star clusters, the possibility that at least 364
part of the grammage of CRs is accumulated near sources 365
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In order to understand the importance of this statement,241
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ity to Lw = 1039Lw,39erg/s. The gamma ray260
flux computed using Eq. 13 can be written as261
E2

ω!ω ↑ 5.2 ↓ 10→10ωCRLw,39X(E) erg cm→2 s→1262

(1.6 ↓ 10→10ωCRLw,39X(E) erg cm→2 s→1) for ε = 2.2263
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w,39 g cm
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presented by Blasi & Morlino (2023, 2024), where a gas den-277
sity ngas → 5 ↔ 10 cm→3 was used, in line with the values278
inferred by the Lhaaso Collaboration (2024). Using the ex-279
pressions above, this would correspond to a CR acceleration280
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tection also implies that either SCs cannot contribute but 342
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how CRs accumulate grammage in the Galaxy needs to be 344
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The case of Westerlund 1
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Lower limits to the grammage in the cocoon

 Independent of the specific model of CR transport in the bubble, the detection of gamma ray emission 
with Eγ>1 TeV by LHAASO implies a lower limit on the grammage 

 This lower limit is already in excess of the Galactic grammage at the same energy 

 How this extends to lower energies depends on Model 1 or 2 (more severe for Model 1)

If the gamma ray emission detected from Cygnus is a common phenomenon, and this is all but guaranteed clearly, then  
1. Either Star Clusters do not contribute but a small fraction of Galactic cosmic rays 
2. …or if they do, then a major revision of the transport of cosmic rays on Galactic scales is required… including the 

production and decay of both stable and unstable secondaries (e.g. 10Be, 26Al, …) 
3. In alternative the gamma ray emission we see is not of hadronic origin, but then it means that most measurements of the 

density carried out are not to be trusted!



Leptonic models of the gamma ray emission

 At least for Westerlund 1 it has been proposed that the gamma ray emission is due to ICS of leptons 
(Harer et al 2023) 

 In general these models require low magnetic fields (lower than for hadronic models) to limit energy losses 

 But the small fields lead to lower maximum energies of accelerated particles (for electrons about 200 TeV) 
even for Bohm diffusion 

 Either way, for hadronic or leptonic interpretation of the gamma ray emission, it seems that star clusters 
as sources of CR especially at the knee, raise many doubts 

 The issue of SN explosions in star clusters might circumvent some of these issues, but not all…
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SN explosions inside a SCIurii Sushch et al.: Particle acceleration in the supernova remnant exploding in the young stellar cluster

Fig. 3. Classic case for di↵erent turbulence models and ages

Fig. 4. Comparison of Bohm-like di↵usion with ⌘BOHM = 1 and
⌘BOHM = 5 for the classic case for 4000 years.

In the energetic case the situation is certainly more
favourable. Higher shock velocity ensures acceleration of pro-
tons to couple of hundreds of TeV even in the case of the pre-
generated turbulence. In Fig. 5 the evolution of the total particle
spectrum with time in the energetic scenario is shown. The for-

ward shock reaches the termination shock shortly before 1000
years. In Fig. 6 we show also downstream and upstream pectra
for the age of 6000 years noting that only a very small frac-
tion of particles escape upstream of the forward shock. It is ex-
pected that for Bohm-like di↵usion the PeV energies should be
well reachable. [I should run the energetic case also for Bohm
with ⌘BOHM = 5. We should get to PeV there but only barely,
i suspect]

5. Summary and discussion

Our analytic and numeric analysis of the particle acceleration at
the SNR shock evolving in the super bubble formed by the col-
lective wind of the compact stellar cluster showed that in gen-
eral it does not di↵er much from individual core-collapse SNRs
evolving the the stellar wind bubble of their progenitors and es-
sentially faces the same di�culties when it comes to the the ac-
celeration to PeV energies. The pre-generated magnetic turbu-
lence that should be present in the super bubble resulted from
the interaction of winds of individual stars does not seem to help
in that regard. Only for energetic events with the explosion en-
ergy of 1052 erg the pre-generated turbulence might be su�cient
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We ran simulations of the evolution of a SN shock in 
the environment of the bubble excavated by the 
collective wind 

As expected, the cutoff in thespectrum of accelerated 
particles at the SN shock depends strongly on the 
D(E) 

If to use the turbulence already existing in the wind in 
which the SN shock moves, Emax fails to reach PeV 

Bohm diffusion might be justified if turbulence is self-
generated, and in that case Emax approaches PeV 

But it is unlikely to have the right conditions for 
streaming instability in the bubble 

If the gas in the SC is the one we inferred above, we 
have exactly the same problems raised above: the 
grammage accumulated in the SC is too large 

Sushch, PB & Brose 2024



Conclusions
 SC were proposed as possible sources of PeV Galactic CR, but the effective maximum 

energy is quite lower than PeV (gamma ray emission confirms that Emax<PeV)  

 If gamma rays are generally of hadronic origin, ξCR=0.5%, hence negligible contribution to 
the CR flux, including at PeV energies 

 On the other hand, for Cygnus, gamma ray morphology and spectrum agrees well with a 
hadronic interpretation —> the low ξCR leads to requiring a large grammage  

 This large grammage reflects in a nice difference between H and He spectra, but… 

 The price to pay is that nuclei are all destroyed and the transport on Galactic scales 
requires major revision 

 We are left with a conundrum: a) Star clusters do now appreciably contribute to CR flux, 
or b) the gamma ray emission is not of hadronic origin —> perhaps larger CR contribution 
from less bright SC, but in this case hardly important at PeV 


