Stellar wind interaction around young star clusters: 3D MHD simulations

Lucia Härer with Thibault Vieu, Brian Reville, and Jieshuang Wang

> October 29, 2024 TOSCA, Siena

Young star clusters are gamma-ray sources!

How are particles accelerated? How do they propagate?

Emission extends over \sim 10-100 pc! \rightarrow Comes from *surroundings* of star clusters.

Star Cluster Environments

- *Complicated regions*, shaped by *stellar wind feedback*.
- Highly *diverse*: ambient medium, cluster age, compactness, stellar content etc.

Westerlund 1

cluster wind termination shock

compact cluster

→ cluster wind termination shock (WTS)

[Härer+23:](https://ui.adsabs.harvard.edu/abs/2023A%26A...671A...4H/abstract) preferred model: *leptonic* (IC), acceleration at WTS

Hadronic model fails to predict morphology. Emission comes from low density region.

Westerlund 1

cluster wind termination shock

compact cluster

→ cluster wind termination shock (WTS)

[Härer+23:](https://ui.adsabs.harvard.edu/abs/2023A%26A...671A...4H/abstract) preferred model: *leptonic* (IC), acceleration at WTS

> *Hadronic model fails to predict morphology. Emission comes from low density region.*

Cygnus OB2

loose cluster/association → *individual* termination shocks

photons >1 PeV! \rightarrow hadronic (at UHE)

How to model these complicated and highly diverse regions? Are criteria for efficient particle acceleration met?

How to model these complicated and highly diverse regions? Are criteria for efficient particle acceleration met?

1D theory: single star

How to model these complicated and highly diverse regions? Are criteria for efficient particle acceleration met?

How to model these complicated and highly diverse regions? Are criteria for efficient particle acceleration met?

3D MHD Simulations of Young **Compact** Clusters

PLUTO code, ideal MHD module

- **Resolve winds of 10-100 most massive stars** ($>$ 10s M_o V_{wind} ~1000s km/s) within ~1 pc
- ✔ Simulate *evolution of full superbubble* over 400 kyr \rightarrow requires box size >50 pc
- ✔ Evolution: *Wolf-Rayet phase* mass-loss increase 10x (cf. Seo+ 18)
- **Parker spiral B-fields** 10% magnetic stars: 1 kG (cf. Grunhut+ 17)

See also HD simulations by **T. Vieu!**

Density Slices

 4 M $_{\odot,}$ 46 stars > 40 M_o radius 1 pc

1. non-spherical, non-uniform strength

2. sometimes dominated by individual stellar WTS

3. WTS is strong $(M_s > 10)$ and super-Alfvénic

Lucia Härer - lucia.haerer@mpi-hd.mpg.de 13

3. WTS is strong $(M_s > 10)$ and super-Alfvénic

4. "decoupling" of individual winds: WTS becomes more spherical

but: time-scales for decoupling can be long, very strong winds might never decouple (WRs!)

5. WTS volume smaller than predicted by 1D theory: *transonic streams*

Transonic Streams

- collimated outflows with M_s ~1-3, up to 10 pc long
- can have a strong shock at their base (WTS), consecutively weaker internal shocks
- get unstable at "tip" and mix with downstream medium
- B-field can be increased in vicinity

B-field Maps

- highly non-uniform (is expected -10% of stars with 1 kG, 90% with 10 G)
- **B** strongly depends on proximity to magnetic stars
- mixing of winds in WTS downstream leads to fewer extreme B-field values

B-field Average Values

- 1 kG for 10% of stars
- dense: same stars as sparse but different spatial distribution and radius 0.6 pc
- low B: same as dense, but 100 G for 10% of stars
- high B : same again, 20% with 1 kG

B-field Average Values

- large spread, dependence on compactness and stellar content
- on average: core 30-200 μ G, wind 2-20 μ G, bubble 5-20 μ G
- but: superbubble not stationary \rightarrow averages slowly drop

difficult to constrain, 1 μG to a few 10s of μG are plausible in wind and bubble

- sparse: radius 1 pc, 1 kG for 10% of stars
- dense: same stars as sparse but different spatial distribution and radius 0.6 pc
- low B: same as dense, but 100 G for 10% of stars
- high B: same again, 20% with 1 kG

B-field Average Values

3 regions

4 clusters

- sparse: radius 1 pc, 1 kG for 10% of stars
- dense: same stars as sparse but different spatial distribution and radius 0.6 pc
- low B: same as dense, but 100 G for 10% of stars
- \cdot high B: same again, 20% with 1 kG
- \cdot B $>$ 10 µG in up to ~50% of volume for standard stellar B-fields
- Negligible fraction with $B > 100 \mu G$ in wind and bubble

B-field Amplification

energy increase over injected energy in the full domain

- power converted to kinetic and thermal energy is consistent with 1D theory
- *0.1-1% of power goes into B-field*, amounts to *total increase by factor ~2-8 over 400 kyr* (default case: ~4)

B-field Morphology

- tangled field lines and spiral structures in the core
- bundles of field lines following radial coherent flows
- radial component higher than for isotropic B-field: \sim 0.6 in bubble

Field Line Diffusivity

Compares distance along the field line to straight distance

Change of behaviour at ~5 pc (esp. for dense cluster)

Δx

(Magnetic) Wolf-Rayet Stars

• Generally, Wolf-Rayet stars *strongly impact flow dynamics and shock morphology***.** Just a few Wolf-Rayet stars can easily dominate a cluster's wind power.

(Magnetic) Wolf-Rayet Stars

- Generally, Wolf-Rayet stars *strongly impact flow dynamics and shock morphology***.** Just a few Wolf-Rayet stars can easily dominate a cluster's wind power.
- Wolf-Rayet stars with high B-fields can produce *large coherent structures.*

Considerations on Particle Acceleration *(in compact clusters: radius < 2-3 pc)*

✔ Simulations show a strong, super-Alfvénic WTS and a turbulent superbubble interior.

Considerations on Particle Acceleration *(in compact clusters: radius < 2-3 pc)*

✔ Simulations show a strong, super-Alfvénic WTS and a turbulent superbubble interior.

Maximum Energy: (parameters measured in upstream)

 \rightarrow Particles *could reach 1 PeV* at WTS in an optimistic scenario. However: fitting CRs beyond the knee *requires 10s of PeV*.

Considerations on Particle Acceleration *(in compact clusters: radius < 2-3 pc)*

✔ Simulations show a strong, super-Alfvénic WTS and a turbulent superbubble interior.

Maximum Energy: (parameters measured in upstream)

 \rightarrow Particles *could reach 1 PeV* at WTS in an optimistic scenario. However: fitting CRs beyond the knee *requires 10s of PeV*.

- Spectra might show multiple components due to non-uniform WTS and contributions from other sources.
- SNe in compact clusters could be powerful accelerators (Vieu & Reville 23).

Conclusions

Strong, large-scale wind termination shock. but: *non-uniform, smaller than in 1D theory*

Acceleration to 100s of TeV

- Flow and B-field show *complex morphology.* e.g. supersonic streams
	- \rightarrow Challenging to account for in 1D acceleration and transport models.

● Strong dependence on *individual* wind-wind interactions.

→ Care should be taken when using average values! Instead: understand stellar population, its history, and the cluster environment.

MHD Simulations of Star Clusters Härer et al., Proceedings ICRC 2023

Paper in prep.!

Lucia Härer - lucia.haerer@mpi-hd.mpg.de 30

B-field Radial Profile

Comparison between simulation runs

