Multi-messenger astrophysics with star clusters

Silvia Celli

in collaboration with S. Menchiari, G. Morlino, V. Vecchiotti, G. Peron, R. Lopez-Coto silvia.celli@roma1.infn.it

Sapienza Università di Roma INFN - Sezione di Roma INAF - Osservatorio Astronomico di Roma

Oct 29th 2024 - Topical Overview on Star Cluster Astrophysics

INFN

The Galactic Plane in MWL-MM

A new population of gamma-ray sources

- Extended gamma-ray emission (1°-3°) detected by many star clusters
- Origin of emission?
- Emission size consistent with projected dimension of the wind-blown bubble
- Difficult to disentangle diffuse and lowsurface brightness sources

Name	$\log {\it M}/M_{\odot}$	r_c [pc]	D [kpc]	Age [Myr]	L_w [erg s ⁻¹]
Westerlund 1	4.6 ± 0.045	1.5	4	4 - 6	10
Westerlund 2	4.56 ± 0.035	1.1	2.8 ± 0.4	1.5 - 2.5	2
Cygnus OB2	4.7 ± 0.3	5.2	1.4	2 - 7	2
NGC 3603	4.1 ± 0.1	1.1	6.9	2 - 3	-
BDS 2003	4.39	0.2	4	1	
W40	2.5	0.44	0.44	1.5	-
RSGC 1	4.48	1.5	6.6	10 - 14	-
MC 20	~ 3	1.3	3.8 - 5.1	3 - 8	~ 4
NGC 6618		3.3	~ 2	< 3	-
30 Dor (LMC)	4.8 - 5.7	multiple	50	1	
NGC 2070 / RCM 136	4.34 - 5	subcluster	UG	5	-

Do young and massive star clusters contribute to the MM diffuse emission?

What is the unresolved source contribution to the diffuse gamma-ray and neutrino emissions observed from our Galaxy?

YMSCs

 Clusters of hundreds OB-type (M_☆>3 M_☉) stars distributed over few pc.

Young: Age < 10 Myr Massive: $M_{SC} > 10^3 M_{\odot}$

- Recently emerged as a new gamma-ray source population
- Several acceleration sites proposed:
 - massive star winds

Casse & Paul, ApJ 237 (1980) 236G

- collective wind termination shock
 Morlino et al., MNRAS 504 (2021) 4
- SNRs in cluster cores

Vieu et al., MNRAS 512 (2022) 1275

Vieu & Reville, MNRAS 519 (2023) 136V

What powers stellar clusters?

Different sources of power:

Phase	Source	Single episode	Model
$t \lesssim 3 \mathrm{Myr}$	MS stellar winds	$t \gtrsim Myr$	quasi-stationary
$3 \text{ Myr} \lesssim t \lesssim 7 \text{ Myr}$	WR stellar winds	$t \sim 10^5 \mathrm{yr}$	semi-stationary
$3 \text{ Myr} \lesssim t \lesssim 30 \text{ Myr}$	SNe	$t \sim 10^3 - 10^4 \mathrm{yr}$	impulsive

What do we need to describe the cumulative hadronic emission from star clusters?

Cluster population: space distribution and formation rate

Stellar wind physics for the population inside clusters

Cluster dynamics: — the wind-blown bubble — SNR shock evolution — HD & MHD turbulence

Target gas distribution: → wind ejecta + shell → uniform? clumpy?

Particle acceleration model: —— Wind Termination Shock (WTS) —— SNR Shocks

 \rightarrow We follow the approach defined in 🔰 Menchiari et al., arXiv:2406.04087, submitted

1. Cluster distribution

 Because the Milky Way population of YMSCs is not known, information from **local population** will be used

1. Cluster distribution

 Because the Milky Way population of YMSC is not known, information from **local population** will be used

Synthetic cluster population

Total number of YMSCs: 747 (Age < 10 Myr, M_{SC} > 10³ M_{sun})

Single realization of the Galactic population

100 realizations

2. Stellar population in star clusters

Total number of stars per cluster

$$N_{\star} = \Lambda M_{\rm sc}$$

with

stellar IMF

Kroupa et al., MNRAS 322 (2001) 231 $f_\star(M_\star) \propto M_\star^{-lpha_i}$

 $egin{aligned} lpha_0 &= \pm 0.3 \pm 0.7, & 0.01 \leq m/\mathrm{M}_\odot < 0.08, \ lpha_1 &= \pm 1.3 \pm 0.5, & 0.08 \leq m/\mathrm{M}_\odot < 0.50, \ lpha_2 &= \pm 2.3 \pm 0.3, & 0.50 \leq m/\mathrm{M}_\odot < 1.00, \ lpha_3 &= \pm 2.3 \pm 0.7, & 1.00 \leq m/\mathrm{M}_\odot, \end{aligned}$

MS & WR stellar wind physics

Both MS and WR stars are included, the latter phase being of duration ΔT =0.3 Myr relevant only for stars with M_{\propto}>25 M_{\odot}

Mass loss rate \dot{M}_{\star}

- OB-type stars Nieuwenhuijzen & de Jager, A&A 231 (1990) 134
- WR stars Nugis & Lamers, A&A 360 (2000) 227N
- Wind speed $v_{\star,w}$
 - OB-type stars Kudritzki & Puls, ARev A&A 38 (2000) 613
 - WR stars, constant to 2000 km/s

Wind luminosity

$$L_{\star,w} = \frac{1}{2} \dot{M}_{\star} v_{\star,w}^2$$

-2Nieuwenhuijzen et al. (1990) Yungelson et al. (2008) Vink et al. (2000) -6 log₁₀M, [M_o yr⁻¹] -10 -15 -14 -16Mokiem et al [SMC] (2007) stars [6 par fit] (Brands et al 2022) R136 stars [12 par fit] (Brands et al 2022) Kobulnicky et al (2019) -18 Oskinova et al (2011) Mokiem et al [MW] (2007) Mokiem et al [LMC] (2007) Sun -203 5 0 2 6 $\log_{10}L_{\star}[L_{\odot}]$

S. Menchiari, PhD thesis (2023)

No SN included yet in these computations —→ lower limit to the SC energy conversion into CRs

3. Particle acceleration @ WTS

T_{age} < 3 Myr: only stellar winds

Morlino et al., MNRAS 504 (2021) 4

Constant injection of energy in spherical symmetry:

- **Stellar Cluster core:**
- ~ few pc radius
- **Collective Wind Termination** Shock (WTS):

$$R_{s}(t) = 48.6 \left(\frac{n}{\mathrm{cm}^{-3}}\right)^{-0.3} \left(\frac{\dot{M}_{c}}{10^{-4}\mathrm{M}_{\odot}\mathrm{yr}^{-1}}\right)^{0.3} \\ \left(\frac{\nu_{\mathrm{w,c}}}{1000\,\mathrm{km\,s}^{-1}}\right)^{0.1} \left(\frac{t}{10\,\mathrm{Myr}}\right)^{0.4} \mathrm{pc}$$

Bubble:

$$R_b(t) = 174 \left(\frac{n}{\mathrm{cm}^{-3}}\right)^{-0.2} \left(\frac{L_{\mathrm{w,c}}}{10^{37} \mathrm{\,erg\,s}^{-1}}\right)^{0.2} \left(\frac{t}{10 \mathrm{\,Myr}}\right)^{0.6} \mathrm{pc}$$

Target gas distribution in wind bubbles

- We adopt an idealized purely adiabatic spherical model
- A more realistic density profile should consists of a complex fractal structure of filaments and clumps, as induced by shell fragmentation and development of hydro instabilities (induced by e.g. cooling effects, wind clumpiness and ISM inhomogeneities)

radial distance

1. $R_c < r < R_s \longrightarrow$ free cold wind profile $n_w(r) = \frac{\dot{M_c}}{4\pi r^2 v_w}$ 2. $R_s < r < R_{cd} \longrightarrow$ hot bubble

$$n_{\rm b} = \frac{M_{\rm b}}{\frac{4}{3}\pi(R_{\rm cd}^3 - R_{\rm s}^3)}$$

$$M_{\rm b} = (\dot{M}_{\rm sh} + \dot{M}_{\rm w}) t_{\rm age} - \frac{\dot{M}_{\rm w}}{v_{\rm w}(R_{\rm s} - R_{\rm c})}$$

$$\dot{M}_{\rm sh} = 2 \times 10^{-4} \left(\frac{L_{\rm w,c}}{10^{37} \,{\rm erg/s}}\right)^{\frac{27}{35}} \left(\frac{n}{10 \,{\rm cm}^{-3}}\right)^{-\frac{2}{35}} \left(\frac{t}{1 \,{\rm Myr}}\right)^{\frac{6}{35}} M_{\odot} \,{\rm yr}^{-1}$$

3.
$$R_{cd} < r < R_b \longrightarrow shell$$

 $n_0 \qquad \dot{M}_{sh}T_{age}$

$$n_{\rm sh} = \frac{n_0}{1 - R_{\rm cd}^3 / R_{\rm b}^3} - \frac{M_{\rm sh} T_{\rm age}}{m_{\rm p} V_{\rm sh}}$$

Synthetic YMSC population

Menchiari et al., arXiv:2406.04087, submitted

Particle acceleration @ WTS of YSCs

Time-stationary transport equation in spherical geometry: $\frac{\partial}{\partial r} \left[r^2 D(r,p) \frac{\partial f}{\partial r} \right] - r^2 u(r) \frac{\partial f}{\partial r} + \frac{d \left[r^2 u \right]}{dr} \frac{p}{3} \frac{\partial f}{\partial p} + r^2 Q(r,p) = 0$ Arbitrary diffusion coefficient D(r,p) Injection only at the $Q(r,p) \propto \delta(p-p_{\rm inj}) \,\delta(r-R_s)$ termination shock • Wind velocity profile: $u(r) = \begin{cases} u_1 = v_w & \text{for } r < R_s, \\ \frac{u_1}{\sigma} \left(\frac{R_s}{r}\right)^2 & \text{for } R_s < r < R_b, \\ 0 & \text{for } r > R_b; \end{cases}$ **Boundary conditions:** 1. No net flux at the cluster center: $r^2 [D\partial_r f - uf]_{r=R_c} = 0$ 2. Matching the Galactic distribution: $f(r \rightarrow \infty, p) = f_{gal}(p)$

"Reversed" geometry wrt supernova remnants

Particle acceleration @ WTS of YSCs

$$\xi_{CR} = 0.10$$

$$f_{\rm WTS} \propto p^{-4.2}$$

Acceleration at the collective WTS is calculated under the following assumptions:

CR acceleration efficiency is a few % of the wind ulletkinetic luminosity:

 $L_{\rm cr} = \epsilon_{\rm cr} L_{\rm w},$

Magnetic turbulence is produced by wind nonulletstationarity and inhomogeneities

 $4\pi r^2 v_{\rm w} \frac{\delta B_{\rm w}^2}{4\pi} = \eta_{\rm B} \frac{1}{2} \dot{M} v_{\rm w}^2$

→ few % of wind kinetic energy converted into magnetic energy;

Diffusion coefficient depends on the turbulence inside the bubble (unknown): most likely, it is generated by wind itself (MHD instabilities, flow non stationarity) and it impacts both transport and maximum energy of particles

$$\begin{cases} D_{\text{Kol}}(E) = \frac{v}{3} r_L (\delta B)^{1/3} L_c^{2/3} \\ D_{\text{Kra}}(E) = \frac{v}{3} r_L (\delta B)^{1/2} L_c^{1/2} \\ D_{\text{Bohm}}(E) = \frac{v}{3} r_L (\delta B) \end{cases}$$

Morlino et al., MNRAS 504 (2021) 4

WTS particle acceleration: spectrum & E_{max}

4. Radiative signatures: neutrinos

19

Menchiari, Celli et al., in prep.

4. Radiative signatures: gamma rays The masking procedure

Note: GDE data are provided after masking known detected sources (TeVCat+LHAASOcat) A similar mask is defined for the synthetic simulations

<u>ROI1</u>: 15°<glon<125°, |glat|<5°

ROI2: 125°<glon<235°, |glat|<5°

4. Radiative signatures: gamma rays Diffuse emission

3b. Particle acceleration @ SNRs in SCs

- Why SCs are also important for SNRs?
 - ~100% of massive stars born in SCs [~80% explode in SCs, ~20% explode as isolated (probably associated to runaway stars)];
 - 80% of SNRs expand into an environment different from the "regular" ISM: lower density (n~0.01-0.1 cm⁻³), higher temperature (T~10⁶ -10⁸ K), highly turbulent medium (+ advection).
- Why SNR explosions in SCs are difficult to treat?
 - SNRs are transient phenomena along the SC evolution, introducing non-stationarity effects in the solution;
 - the non-uniform environment of SCs might induce the formation of multiple reflected shocks.

A simplified model for particle acceleration @ SNRs in SCs

SNR dies before reaching the bubble boundary:

$$R_{\rm Sed} = 17 \left(\frac{M_{\rm ej}}{5M_{\odot}}\right)^{1/3} \left(\frac{n_b}{0.01 \,{\rm cm}^{-3}}\right)^{1/3} \,{\rm pc} \simeq R_{\rm TS}$$

- Particle acceleration @ SNR lasts only for the ejecta-dominated phase;
- Ambient magnetic field given by wind-termination shock turbulence: B₀ ~ 10 μG;
- Amplification due to resonant streaming instability only:

$$\mathcal{F}_{\rm res} = 0.5 \left(\frac{\xi_{\rm CR}}{0.1}\right)^{1/2} \left(\frac{E_{\rm SN}}{10^{51}\,{\rm erg}}\right)^{1/4} \left(\frac{M_{\rm ej}}{5M_{\odot}}\right)^{-1/4}$$

Time-limited acceleration (tacc=tSed):

$$E_{\rm max}^p = 2\mathcal{F}_{\rm res} \left(\frac{B_0}{10\,\mu G}\right) \left(\frac{M_{\rm ej}}{M_\odot}\right)^{-1/6} \left(\frac{E_{\rm SN}}{10^{51}\,{\rm erg}}\right)^{1/2} \left(\frac{n_0}{0.01\,{\rm cm}^{-3}}\right)^{-1/3} \,{\rm PeV}$$

Power-law spectrum at the SNR shock, with s=4.3 & 10% CR conversion efficiency:

$$f_s(p) = \frac{3\xi_{\rm CR} n_b u_{\rm sh}}{4\pi\Lambda(m_p c)^4 c^2} \left(\frac{p}{m_p c}\right)^{-s} e^{-p/p_{\rm max}}$$

Particle confinement inside the bubble for one advection time:

$$t_{\rm adv} = \int_{R_{TS}}^{R_b} \frac{dr}{u(r)} = \frac{R_b^3}{3u_2 R_{TS}^2} = 0.61 t_{SC}$$

Total number of YMSCs: 2241 (Age < 30 Myr, M_{SC} > 10³ M_{sun})

Conclusions

- Young and massive star clusters are powerful particle accelerators, as testified from gamma-ray detections;
- A comprehensive study of the Milky Way YMSC population was here presented by means of synthetic realizations;
 - Baseline model including **WTSs**;
 - Inclusion of SNRs is a work in progress.
- Non-negligible contribution of unresolved sources to diffuse gamma-ray emission above 100 GeV;
- Preliminary results indicate a possible non-negligible contribution to diffuse Galactic neutrinos as well;
- Model improvements required to treat properly bubble structure (relevant for SC geometry and hadronic collisions) and diffusion (relevant for transport and diffusion), particularly in the presence of SNRs.

Thanks for your kind attention!

