Recent results on gamma-ray emission from massive star clusters as detected with H.E.S.S.

The massive star cluster Westerlund 1

Lars Mohrmann

Max Planck Institute for Nuclear Physics, Heidelberg <u>lars.mohrmann@mpi-hd.mpg.de</u> | <u>https://lmohrmann.github.io</u>

TOSCA workshop — Siena, Italy — October 28, 2024

Massive star clusters in the Large Magellanic Cloud

VHE gamma-ray emission from (the vicinity of) star clusters

Westerlund 2

-57°00' H.E.S.S. 2011

5 -58°00'

10^h30^m

HESS J1023-575

HESS J1026-582

10^h25^m Right As

0°30

Westerlund 1

CI* 1806-20

286°00'

Oct 28, 2024

Lars Mohrmann — Recent results on star clusters as detected with H.E.S.S. — TOSCA workshop

30 Por C and R136

Cygnus OB2

VHE gamma-ray emission from (the vicinity of) star clusters

CI* 1806-20

W43

30.6

Oct 28, 2024

Cygnus OB2

Lars Mohrmann — Recent results on star clusters as detected with H.E.S.S. — TOSCA workshop

Star clusters as cosmic-ray sources

• Loads of ideas how / where cosmic rays are accelerated!

cluster wind termination shock

Star clusters as cosmic-ray sources

Oct 28, 2024

High Energy Stereoscopic System (H.E.S.S.)

- Located in Khomas highland, Namibia
- System of 5 imaging atmospheric Cherenkov telescopes
 - ► 4 telescopes with 12m mirrors
 - ► 1 telescope with 28m mirror

High Energy Stereoscopic System (H.E.S.S.)

- Located in Khomas highland, Namibia
- System of 5 imaging atmospheric Cherenkov telescopes
 - ► 4 telescopes with 12m mirrors
 - ► 1 telescope with 28m mirror
- Sensitive to gamma rays in energy range $\sim 100 \,\text{GeV} - 100 \,\text{TeV}$ \rightarrow smooth continuation from *Fermi*-LAT energy range

High Energy Stereoscopic System (H.E.S.S.)

- Located in Khomas highland, Namibia
- System of 5 imaging atmospheric Cherenkov telescopes
 - ► 4 telescopes with 12m mirrors
 - ► 1 telescope with 28m mirror
- Sensitive to gamma rays in energy range $\sim 100 \,\text{GeV} - 100 \,\text{TeV}$ → smooth continuation from *Fermi*-LAT energy range
- High angular resolution $< 0.1^{\circ} \text{deg at } E > 1 \text{ TeV}$ \rightarrow ideally suited for morphological studies

Westerlund 1

Lars Mohrmann — Recent results on star clusters as detected with H.E.S.S. — TOSCA workshop

Oct 28, 2024

Reference: HESS Coll., A&A 666, A124 (2022) arXiv:2207. 10921

9

-11

Reference: HESS Coll., A&A 666, A124 (2022) arXiv:2207.10921

Lars Mohrmann — Recent results on star clusters as detected with H.E.S.S. — TOSCA workshop

10

• HESS J1646–458

- Iargely extended γ -ray source
- diameter $\sim 2^{\circ}$ (140 pc)
- very likely associated with Westerlund 1

Reference: HESS Coll., A&A 666, A124 (2022) arXiv:2207.10921

- Source morphology
 - very large extent: ~ $2^{\circ}/140 \,\mathrm{pc}$
 - very complex
 - not peaked at position of Westerlund 1
 - shell-like structure!
 - centroid slightly shifted from cluster position
 - bright spots along shell

- Source morphology
 - very large extent: ~ $2^{\circ}/140 \,\mathrm{pc}$
 - very complex
 - not peaked at position of Westerlund 1
 - shell-like structure!
 - centroid slightly shifted from cluster position
 - bright spots along shell
- Energy-dependence?
 - bright spots remain
 - shell-like structure persists!

- Source morphology
 - very large extent: ~ $2^{\circ}/140 \,\mathrm{pc}$
 - very complex
 - not peaked at position of Westerlund 1
 - shell-like structure!
 - centroid slightly shifted from cluster position
 - bright spots along shell
- Energy-dependence?
 - bright spots remain
 - shell-like structure persists!

- Source morphology
 - very large extent: ~ $2^{\circ}/140 \,\mathrm{pc}$
 - very complex
 - not peaked at position of Westerlund 1
 - shell-like structure!
 - centroid slightly shifted from cluster position
 - bright spots along shell
- Energy-dependence?
 - bright spots remain
 - shell-like structure persists!
- Confirmed by radial excess profiles

Oct 28, 2024

Westerlund 1 – energy spectrum

Westerlund 1 — correlation with gas maps

- Output A line of the second second
- \odot Comparison with HI (\rightarrow atomic hydrogen) and ¹²CO (\rightarrow molecular hydrogen) line emission
- Low density in regions with bright gamma-ray emission!
- A challenge for the hadronic scenario but there could still be ways out:
 - strong UV radiation from cluster can *ionise* gas or *photo-dissociate* CO molecules
 - distribution of cosmic rays need not be uniform
- But see Härer et al., A&A 671, A4 (2023) !
 - Ieptonic model preferred

Right Ascension 16^h40^m -44°30′ $-45^{\circ}00'$ 30' Declination $-46^{\circ}00'$ 30' -47°00′ $-^2CO$ -44°30′ - $-45^{\circ}00'$ 30' Declination -46°00′ 30 -47°00′ 16^h52^m 48^m 44^m 40^{m} **Right Ascension**

- Source association
 - only Westerlund 1 can explain majority of emission
 - other objects (e.g. pulsars) may contribute locally

Westerlund 1 — wrap-up

- Source association
 - only Westerlund 1 can explain majority of emission
 - other objects (e.g. pulsars) may contribute locally

- Shell-like morphology
 - \rightarrow connection to cluster wind termination shock?!
 - basic superbubble models suggest $R_{TS} \sim O(30 \,\mathrm{pc})$
 - matches radius of shell-like structure seen in gamma rays!

Credit: ESO

- Tarantula Nebula
 - most active starburst region in Local Group
 - one of the largest known H-II regions
 - host to numerous massive star clusters

Dennerl et al., A&A 365, L202 (2001)

Oct 28, 2024

- Tarantula Nebula
 - most active starburst region in Local Group
 - one of the largest known H-II regions
 - host to numerous massive star clusters
- Objects of interest (for this talk)
 - ► N 157B pulsar wind nebula
 - ► **30 Dor C** superbubble
 - ► R136 super star cluster

- Tarantula Nebula
- most active starburst region in Local Group
- one of the largest known H-II regions
- host to numerous massive star clusters
- Objects of interest (for this talk)
 - ► N 157B pulsar wind nebula
 - \rightarrow <u>very bright</u> in gamma rays
 - ► **30 Dor C** superbubble \rightarrow only confirmed one in gamma rays
 - ► **R136** super star cluster
 - \rightarrow no gamma rays so far...

Oct 28, 2024

- Advanced analysis techniques A **Python** package for \rightarrow modelling of emission in 3D (RA, Dec, energy)
- Iteratively add sources to model until no significant emission remains
 - D Gaussians as spatial models
- Need three separate sources for a good description of the data

Significance
51σ
11σ
6.3σ

- Advanced analysis techniques \rightarrow modelling of emission in 3D (RA, Dec, energy)
- Iteratively add sources to model until no significant emission remains
 - D Gaussians as spatial models
- Need three separate sources for a good description of the data

Source	Significance
N157B	51σ
$30\mathrm{Dor}\mathrm{C}$	11σ
R136	6.3σ

Right Ascension (J2000)

Oct 28, 2024

Oct 28, 2024

- Extension in gamma rays established (3.3σ) for the first time!
 - size roughly compatible with X-ray shell
 - suggestive of a connection?
- Peak of emission *not* coincident with locations of densest gas clouds

30 Dor C

- Extension in gamma rays established (3.3σ) for the first time!
 - size roughly compatible with X-ray shell
 - suggestive of a connection?
- Peak of emission *not* coincident with locations of densest gas clouds
- Expanding superbubble model (Weaver 1977)
 - $L_w = 1.5 \times 10^{38} \,\mathrm{erg \, s^{-1}}, \, v_w = 3\,000 \,\mathrm{km \, s^{-1}},$ $T = 4 \,\mathrm{Myr}, n = 100 \,\mathrm{cm}^{-3}$
 - *superbubble* radius $\approx 74 \, \mathrm{pc}$
 - *termination shock* radius $\approx 7.9 \, \text{pc}$

30 Dor C

- Sest-fit position of gamma-ray source compatible with location of star cluster (separation $\approx 20''$)
- Weak correspondence between gamma-ray emission and molecular gas
- Also observed as an extended source $(3.1\sigma)!$

R136

- Sest-fit position of gamma-ray source compatible with location of star cluster (separation $\approx 20''$)
- Weak correspondence between gamma-ray emission and molecular gas
- Also observed as an extended source $(3.1\sigma)!$
- Expanding superbubble model (Weaver 1977)
- $L_w = 10^{39} \,\mathrm{erg \, s^{-1}}, \, v_w = 3\,000 \,\mathrm{km \, s^{-1}},$ $T = 1.5 \,\mathrm{Myr}, n = 100 \,\mathrm{cm}^{-3}$
- *superbubble* radius $\approx 56 \, \text{pc}$
- ► *termination shock* radius ≈ 8.7 pc

R136

30 Dor C and R136 – energetics

• 30 Dor C and R136 are *twice as luminous* as Westerlund 1 — the most massive young star cluster in the Milky Way!

30 Dor C and R136 – energetics

- 30 Dor C and R136 are *twice as luminous* as Westerlund 1 — the most massive young star cluster in the Milky Way!
- Physical spectral models (here: R136)
 - hadronic (pp)
 - $W_p(E_p > 1 \text{ GeV}) \sim 1.1 \times 10^{51} (n/100 \text{ cm}^{-3})^{-1} \text{ erg}$ \rightarrow need high gas densities
 - *leptonic* (inverse Compton)
 - $L_{\rho}(E_{\rho} > 0.1 \text{ TeV}) \sim 5.3 \times 10^{36} \text{ erg s}^{-1} \ (B = 5\mu G)$
 - \rightarrow affordable, given cluster wind power of $\sim 10^{39}$ erg s⁻¹

- Output Detected bright gamma-ray emission from two young massive star clusters
 - ► 30 Dor C (\rightarrow OB association LH90)
 - ► R136 (new!)

- Oetected bright gamma-ray emission from two young massive star clusters
 - ► 30 Dor C (\rightarrow OB association LH90)
 - ► R136 (new!)
- Sources appear spatially extended
 - extension comparable to expected size of superbubble in both cases

- Output Detected bright gamma-ray emission from two young massive star clusters
 - ► 30 Dor C (\rightarrow OB association LH90)
 - ► R136 (new!)
- Sources appear spatially extended
- extension comparable to expected size of superbubble in both cases
- Basic energetics consideration indicates
 clusters are powerful enough
 - both hadronic or leptonic scenario can work

- Output Detected bright gamma-ray emission from two young massive star clusters
 - ► 30 Dor C (\rightarrow OB association LH90)
 - ► R136 (new!)
- Sources appear spatially extended
 - extension comparable to expected size of superbubble in both cases
- Basic energetics consideration indicates
 clusters are powerful enough
 - both hadronic or leptonic scenario can work
- MWL picture quite different
 - Resolved X-ray bubble for 30 Dor C, but not R136...

eROSITA

Sasaki et al., A&A 661, A37 (2022)

Westerlund 2

- Young massive star cluster
 - ▶ age $\leq 2 \, \text{Myr}$
 - ► distance very uncertain (2 8 kpc)
- Updated H.E.S.S. analysis with 3x increased exposure
 - confirms HESS J1023–575 & HESS J1026–582
 - ▶ new: HESS J1023–575B & HESS J1024–583

Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), A. Nota (ESA/STScI), and the Westerlund 2 Science Team

Lars Mohrmann — Recent results on star clusters as detected with H.E.S.S. — TOSCA workshop

Reference: Holch et al., PoS (ICRC2023) 778

Westerlund 2

• HESS J1024–583

- coincident with molecular cloud filament
- protons escaping from HESS J1023–575 region?
- HESS J1023-575
- coincident with Westerlund 2, but association still unclear
- e.g. connection to energetic pulsar PSR J1023– 5746 also a viable explanation

Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA), A. Nota (ESA/STScI), and the Westerlund 2 Science Team

Lars Mohrmann — Recent results on star clusters as detected with H.E.S.S. — TOSCA workshop

Significance overlayed with SGPS [24 - 32] km/s

Conclusion

- Westerlund 1
 - very extended gamma-ray emission
 - shell-like structure
 - spectrum to $\sim 100 \,\mathrm{TeV}$
- Massive star clusters in the LMC
 - two bright sources associated with 30 Dor C & R136
 - both measured as extended for the first time
- Westerlund 2
- promising results in the pipeline

Conclusion

- Westerlund 1
- very extended gamma-ray emission
- shell-like structure
- spectrum to $\sim 100 \,\mathrm{TeV}$
- Massive star clusters in the LMC
 - two bright sources associated with 30 Dor C & R136
 - both measured as extended for the first time
- Westerlund 2
 - promising results in the pipeline
- Excellent angular resolution of H.E.S.S. has been crucial in these measurements
- Massive star clusters continue to be an *important science topic for H.E.S.S.*

Oct 28, 2024

Lars Mohrmann — Recent results on star clusters as detected with H.E.S.S. — TOSCA workshop

Backup slides

- "Residual background"
 - cosmic-ray events that remain after selection cuts
 - traditionally estimated from source-free regions in the field of view

Berge et al., A&A 466, 1219 (2007)

- "Residual background"
 - cosmic-ray events that remain after selection cuts
 - traditionally estimated from source-free regions in the field of view

Berge et al., A&A 466, 1219 (2007)

- "Residual background"
 - cosmic-ray events that remain after selection cuts
 - traditionally estimated from source-free regions in the field of view

Berge et al., A&A 466, 1219 (2007)

- "Residual background"
 - cosmic-ray events that remain after selection cuts
 - traditionally estimated from source-free regions in the field of view
- Background model
 - derived from archival observations
 - challenge: need to match (or correct for) observation conditions
 - zenith angle, optical throughput, atmospheric conditions... -
 - very relevant for CTA!
 - Details: Mohrmann et al., A&A 632, A72 (2019)

Westerlund 1 — fit of hadronic background model

- Adjust model for each run via two parameters
 - normalisation (global scaling)
 - spectral tilt (factor $(E/E_0)^{-\delta}$)
- Adjustment done outside exclusion region
 - derived in iterative procedure
- Resulting significance distribution indicates good agreement

Westerlund 1 – distance

Reference	Distance (kpc)	Method
<u>Clark et al. 2005</u>	< 5.5	Yellow Hypergiants
Crowther et al. 2006	5.0 +0.5-1.0	Wolf-Rayet stars
Kothes & Dougherty 2007	3.9 ± 0.7	HIobservations
<u>Brandner et al. 2008</u>	3.55 ± 0.17	Near-infrared observations, colour-magnitude diagram
<u>Aghakhanloo et al. 2020</u>	2.6 +0.6-0.4	Gaia (DR2) parallaxes
<u>Aghakhanloo et al. 2021</u>	2.8 +0.7-0.6	Gaia (EDR3) parallaxes
Davies & Beasor 2019	3.87 + ^{0.95} -0.64	Gaia (DR2) parallaxes, smaller (cleaner?) sample
<u>Rate et al. 2020</u>	3.78 + ^{0.56} -0.46	Gaia (DR2) parallaxes of WR stars
<u>Beasor et al. 2021</u>	4.12 +0.66-0.33	Gaia (EDR3) parallaxes
Negueruela et al. 2022	4.23 +0.23-0.21	Gaia (EDR3) parallaxes
Navarete et al. 2022	4.05 ± 0.20	Gaia (EDR3) parallaxes, eclipsing binary W36

Our Contrain for a long time

Recent studies based on Gaia data converge on 4 kpc — seems relatively secure

- Energy spectrum
 - extracted in 16 signal regions
 - individual spectra remarkably similar
 - add up region spectra \rightarrow combined spectrum
 - extends to several ten TeV!
 - $\Gamma = 2.30 \pm 0.04, E_c = (44^{+17}_{-11}) \text{ TeV}$
- Hadronic model (proton-proton)
- $\Gamma_p = 2.33 \pm 0.06, E_c^p = (400^{+250}_{-130})$ TeV (almost a PeVatron...)

•
$$W_p(>1 \,\text{GeV}) = 6 \times 10^{51} \left(\frac{n}{1 \,\text{cm}^3}\right)^{-1} \text{erg}$$

- Leptonic model (inverse Compton)
 - $\Gamma_e = 2.97 \pm 0.07$, $E_c^e = (180^{+200}_{-70})$ TeV
 - $L_{\rho}(>0.1 \,\text{TeV}) > 4.1 \times 10^{35} \,\text{erg s}^{-1}$

Westerlund 1 – energy spectrum

Westerlund 1 — cosmic-ray density profiles

- (who claimed to observe 1/r profile)
- towards centre!

Westerlund 1 – Galactic diffuse emission

- Likely contributes to emission, but is difficult to estimate
- Use prediction from PICARD propagation code
- Absolute flux level is very uncertain!
- Shell-like structure not affected

Westerlund 1 — signal region energy spectra

• Very similar in all regions

Only significant deviation: region "d"

Signal region	Excess events	Significance	Significance	ϕ_0
		-	$(E > 4.9 {\rm TeV})$	$(10^{-13} \mathrm{TeV^{-1} cm^{-2} s^{-1}})$
a	396.1	5.3σ	0.9σ	3.76 ± 0.66
b	454.9	5.6σ	1.7σ	4.34 ± 0.64
с	901.8	10.3σ	2.8σ	6.33 ± 0.58
d	1014.0	10.8σ	7.7σ	6.66 ± 0.58
e	430.7	4.7σ	2.9σ	2.84 ± 0.51
f	648.9	7.7σ	4.0σ	4.60 ± 0.64
g	1238.5	13.5σ	6.0σ	7.41 ± 0.54
ĥ	1409.2	14.5σ	4.6σ	8.14 ± 0.54
i	653.4	9.0σ	4.0σ	6.65 ± 0.71
j	1229.0	14.0σ	6.8σ	9.07 ± 0.63
k	1246.4	13.2σ	3.6σ	7.73 ± 0.54
1	1405.7	14.1σ	6.3σ	7.95 ± 0.54
m	469.5	6.8σ	1.7σ	5.40 ± 0.73
n	415.4	5.1σ	3.5σ	3.49 ± 0.62
0	1259.2	14.1σ	5.9σ	8.23 ± 0.57
р	996.7	10.5σ	4.0σ	6.29 ± 0.55

Oct 28, 2024

Westerlund 1 — interpretation

- Source association
 - only Westerlund 1 can explain majority of emission
 - pulsars / PWN may contribute locally
- Acceleration within cluster
 - at wind-wind or wind-supernova interactions
 - no energy-dependent morphology rules out leptonic scenario
 - hadronic scenario viable energetically, but need > PeV cosmic rays to overcome adiabatic energy losses during propagation

Westerlund 1 — interpretation

- Source association
 - only Westerlund 1 can explain majority of emission
 - pulsars / PWN may contribute locally
- Acceleration within cluster
- Acceleration in turbulent superbubble
 - Fermi type 2 acceleration via scattering off magnetic turbulences
 - ► basic superbubble models suggest $R_{SB} \sim O(180 \,\mathrm{pc})$
 - exceeds gamma-ray emission, outer shock not observed \rightarrow not favoured (but reality is more complex than basic models!)

Westerlund 1 — interpretation

- Source association
 - only Westerlund 1 can explain majority of emission
 - pulsars / PWN may contribute locally
- Acceleration within cluster
- Acceleration in turbulent superbubble
- Acceleration at cluster wind termination shock
- shock forms where wind pressure equals that of ISM
- favourable acceleration site
- basic superbubble models suggest $R_{TS} \sim O(30 \,\mathrm{pc})$
- matches radius of shell-like structure seen in gamma rays!
- hadronic scenario works energetically (but need $B \sim \mathcal{O}(50\mu G)$ to confine cosmic rays)
- Ieptonic scenario also feasible! (need $B \leq 10 \mu \text{G}$ to "hide" synchrotron emission)

The superbubble 30 Dor C

- Superbubble (seen e.g. in H α)
- Surrounds "LH 90" association of star clusters
 - age $\sim 4 \,\mathrm{Myr}$ (but older sub-populations exist)
 - several WR stars
 - wind power $\sim 2 \times 10^{38} \text{ erg s}^{-1}$ (uncertain!)
- X-ray synchrotron emission
 - not from H α shell (too slow, ~ 100 km s⁻¹)
 - rather: SNR expanding fast ($\ge 3,000 \,\mathrm{km \, s^{-1}}$) in low-density superbubble
 - ► low B-field ($\leq 20 \,\mu$ G) suggests leptonic origin of TeV emission
- MCSNR J0536–6913: another putative SNR

Mathewson et al., ApJS 58, 197 (1985)

Credit: ESO

Optical (VLT) X-rays (XMM-Newton) 4:00.0 Source 6

• Dense ($\geq 100 \,\mathrm{cm}^{-3}$) molecular clouds, in particular in western part of shell

Oct 28, 2024

Lars Mohrmann — Recent results on star clusters as detected with H.E.S.S. — TOSCA workshop

30 Dor C – MWL view

(D) O-type star ALMA ¹²CO(J=1-0) : 0.3-1.0 keV red WR star green : 1.0-2.0 keV VLSR: 245.0–275.0 km s⁻ blue : 2.0-7.0 keV Observed region with ASTE Observed region with ALMA _____ X-ray brightest-rim (J2000) 10' Declination -69°15 0 MCSNR J0536-6913 -69°14' counts s⁻¹ dec 50 pc SN 1987A 35^m 30^s 05^h 37^m 30^s 36^m 30^s 05^h 36^m 30^s Right Ascension (J2000) Right Ascension (J2000) (d) ASTE ¹²CO(*J* = 3-2) ATCA & Parkes H \$ · · \$ VLSR: 245.0-275.0 km s VLSR: 245.0-275.0 km s-10' Declination (J2000) \bigcirc -69°14' -69°14' 10 Bright CO peaks E K km/s counts s⁻¹ deg⁻² 1500 3000 30 60 05^h 36^m 30^s 05^h 36^m 30^s 35^m 30^s Right Ascension (J2000) Right Ascension (J2000)

Yamane et al., ApJ 918, 36 (2021)

• Size of TeV emission \approx size of superbubble?

Background image credit: NASA/JPL-Caltech **R136** 30 pc $-69^{\circ}02'$ 04'Declination (J2000) 06' 08'10' - $5^{\rm h}39^{\rm m}30^{\rm s}$ 00^{s} $38^{\mathrm{m}}30^{\mathrm{s}}$ 00^{s} Right Ascension (J2000)

Lars Mohrmann — Recent results on star clusters as detected with H.E.S.S. — TOSCA workshop

R136 - MWL view

Townsley et al., AJ 131, 2140 (2006)

infrared 6.5–9.4 μm H_{α}

- Spectrum consistent with published result
- Position and extent match with *Chandra* X-ray image

N 157B

Massive star clusters in the LMC – model parameters

	Best-fit Parameters of the γ -Ray Source Models				
Parameter	Unit	Value			
N157B/HESS J0537-691					
R.A.	deg	$\begin{array}{l} 84.4394 \pm 0.0048_{stat} \\ (5^{h}37^{m}45.^{s}5 \ \pm \ 1.1^{s}_{stat}) \end{array}$			
decl.	deg	$\begin{array}{l} -69.1713 \pm 0.0016_{\rm stat} \\ (-69^{\circ}10'17'' \pm 6_{\rm stat}'') \end{array}$			
$\sigma_{ m Gauss}$	deg	$0.0137 \pm 0.0033_{stat} \pm 0.0030_{sys}$			
ϕ_0	$10^{-13} \text{ TeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}$	$8.69 \pm 0.56_{ m stat} \pm 0.85_{ m sys}$			
α	•••	$2.03 \pm 0.07_{\text{stat}} \pm 0.08_{\text{sys}}$			
β	•••	$0.511 \pm 0.057_{\text{stat}}$			
30 Dor C/HESS J0535-691					
R.A.	deg	$84.021\pm0.018_{stat}$			
		$(5^{h}36^{m}5.^{s}0 \pm 4.3^{s}_{stat})$			
decl.	deg	$-69.197\pm0.006_{\rm stat}$			
		$(-69^{\circ}11'49'' \pm 22_{\rm stat}'')$			
$\sigma_{ m Gauss}$	deg	$0.0319 \pm 0.0066_{stat} \pm 0.0034_{sys}$			
ϕ_0	$10^{-13} \text{ TeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}$	$2.54\pm0.37_{ m stat}{}^{+0.44}_{-0.40} _{ m sys}$			
Γ		$2.57\pm0.09_{stat}$			
R136/HESS J0538-691					
R.A.	deg	$84.692 \pm 0.038_{stat} \ (5^{h}38^{m}46^{s} \pm 9^{s}_{stat})$			
decl.	deg	$-69.103 \pm 0.013_{\rm stat}$			
	2	$(-69^{\circ}06'11'' \pm 47_{\rm stat}'')$			
$\sigma_{ m Gauss}$	deg	$0.0384 \pm 0.0090_{ m stat} {}^{+0.0045}_{-0.0037} _{ m sys}$			
ϕ_0	$10^{-13} \text{ TeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}$	$1.90 \pm 0.58_{\text{stat}} \stackrel{+0.45}{_{-0.38}}_{\text{sys}}$			
Γ		$2.54\pm0.15_{\mathrm{stat}}$			

Oct 28, 2024

Alternative models

- Many alternatives tested
- In particular, allowed more flexible spatial model for N 157B
 - elongation
 - "generalised Gaussian"
 - \blacktriangleright \rightarrow model with 3 sources is always strongly preferred

BG only

Estimation of systematic uncertainties

- Systematic uncertainties derived with "bracketing" approach
 - vary instrument response functions
 - repeat modelling analysis
 - systematic error = difference to default best-fit parameter value
 - total systematic error is quadratic sum of different contributions
 - do not quote error if negligible compared to statistical one

* of the stacked data sets (i.e. not per run!)

- Systematic effects considered:
- background normalisation* $(\pm 0.5\%)$
- energy scale $(\pm 10\%)$
- ▶ PSF width $(\pm 5\%)$

(derived from study on PKS 2155–304, see below)

Latitude Galactic

Oct 28, 2024

Lars Mohrmann — Recent results on star clusters as detected with H.E.S.S. — TOSCA workshop

Westerlund 2 – analysis details

