Speaker: Alexandre INVENTAR PhD Supervisor: Stefano GABICI

γ-ray signatures of particle acceleration from stellar clusters up to PeV energies

INTRODUCTION AND MOTIVATIONS

<u>Main question</u>: For which systems and parameters can we detect an excess of γ -rays generated through p-p interactions by CRs accelerated in star clusters?

<u>Goal</u>: Find corresponding existing systems, compare the models to LHAASO γ -ray flux

→ Identify contributions of star clusters to CR flux at different energies (especially at PeV)
→ Obtain better constraints on acceleration parameters (WTS efficiency, injection slope,...)
→ See if it can explain some unassociated PeVatrons (eg molecular clouds far from a cluster)

DIFFERENT HADRONIC γ -RAYS PRODUCTION **SCENARIOS WITH STELLAR WIND**

3

DIFFERENT HADRONIC γ-RAYS PRODUCTIION SCENARIOS WITH STELLAR WIND

DIFFERENT HADRONIC γ-RAYS PRODUCTIION SCENARIOS WITH STELLAR WIND

SPATIAL DEPENDENCE OF THE γ -RAY FLUX

• Find maximal distances up to which a detectable excess is possible, at fixed energy

• Injection spectrum in the bubble or in the ISM : $f_{inj} \sim \epsilon_w L_w p^{-\alpha_p} \exp\left(-\frac{E}{E_{max}}\right)$

• Diffusion coefficient taken as $D(E) = D_{10} \left(\frac{pc}{10}\right)^{\delta}$

SPATIAL DEPENDENCE OF THE γ -RAY FLUX

• Find maximal distances up to which a detectable excess is possible, at fixed energy

SPATIAL DEPENDENCE OF THE γ -RAY FLUX

• Find maximal distances up to which a detectable excess is possible, at fixed energy

At high energies, sensitivity gives an effective maximal distance to have a detectable excess $R_{max,effective}$

γ -RAY SPECTRA

• Fixing distances, compute the flux for any energy to compare with observed spectra and deduce the minimal parameters configurations enabling a detectable excess

APPLICATION: W43 MAIN

APPLICATION: W43 MAIN

APPLICATION: W43 MAIN

• Leptonic ? Big extension so difficult because of the cooling time

CONCLUSION AND OUTLOOKS

- Several possible hadronic scenarios for creating γ -rays
- Detector sensitivity implies effective maximal distances to detect γ -rays excess
- \rightarrow Constrain the subset of parameters and systems that enabling detectable excess
- Can find systems in this subset (like W43) , and compare models to data
- → Identify contributions of star clusters to CR flux
- → Determine more precisely **the WTS efficiency and injection slope**
- \rightarrow See if it can explain some **unassociated PeVatrons**

<u>Outlooks:</u> • Take into account embedded SNRs \rightarrow acceleration and reacceleration

• Find other powerful star clusters and UHE γ -ray data to have more constraints

CONCLUSION AND OUTLOOKS

- Several possible hadronic scenarios for creating γ -rays
- Detector sensitivity implies effective maximal distances to detect γ -rays excess
- \rightarrow Constrain the subset of parameters and systems that enabling detectable excess
- Can find systems in this subset (like W43) , and compare models to data
- → Identify contributions of star clusters to CR flux
- → Determine more precisely **the WTS efficiency and injection slope**
- \rightarrow See if it can explain some **unassociated PeVatrons**

<u>Outlooks:</u> • Take into account embedded SNRs \rightarrow acceleration and reacceleration

• Find other powerful star clusters and UHE γ -ray data to have more constraints

THANK YOU FOR YOUR ATTENTION !